目的 探討終末期腎?。‥SRD)患者冠狀動(dòng)脈旁路移植術(shù)(CABG)前大隱靜脈橋血管中細(xì)胞外基質(zhì) (ECM)基因表達(dá)的特點(diǎn)?!》椒ā∵x擇復(fù)旦大學(xué)附屬中山醫(yī)院自2004年7月至2010年12月期間收治的經(jīng)冠狀動(dòng)脈造影明確診斷為冠心病患者68例進(jìn)行研究,將68例患者按術(shù)前有無(wú)ESRD史,篩選出ESRD患者30例作為ESRD組(需維持性血液透析患者),38例無(wú)腎病史患者作為對(duì)照組。收集整理所有入選患者詳細(xì)的術(shù)前臨床資料;術(shù)中收集大隱靜脈標(biāo)本,以基因芯片、免疫組織化學(xué)和蛋白印跡法(Western blotting)闡明ESRD條件下CABG術(shù)前大隱靜脈橋血管中細(xì)胞外基質(zhì)基因表達(dá)的情況?!〗Y(jié)果 兩組術(shù)前臨床資料除腎病相關(guān)數(shù)據(jù)外,其余臨床資料差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。ESRD組患者CABG術(shù)前大隱靜脈橋血管中細(xì)胞外基質(zhì)相關(guān)基因表達(dá)上調(diào) 3倍以上的基因有16個(gè),而表達(dá)下調(diào)3倍以上的基因則有3個(gè);ESRD組基質(zhì)金屬蛋白酶-2 (MMP-2)、基質(zhì)金屬蛋白酶-9 (MMP-9) 活性較對(duì)照組升高(2.60± 0.50 vs. 0.70±0.16,1.80±0.40 vs. 0.60±0.15,P<0.01),而組織型基質(zhì)金屬蛋白酶抑制劑-2 (TIMP-2) 和組織型基質(zhì)金屬蛋白酶抑制劑-3 (TIMP-3) 活性較對(duì)照組降低(0.60±0.19 vs. 2.20±0.30,0.90±0.28vs. 2.40±0.70,P< 0.05)?!〗Y(jié)論 與ESRD相關(guān)的多種心血管病危險(xiǎn)因素,嚴(yán)重影響CABG術(shù)前大隱靜脈橋血管中細(xì)胞外基質(zhì)基因表達(dá)平衡,并且這種平衡的打破,有促進(jìn)CABG術(shù)后靜脈橋血管病變發(fā)生的危險(xiǎn)。
引用本文: 孫勇新,丁文軍,朱黎鳴,史昀青,魏強(qiáng),王春生. 終末期腎病患者大隱靜脈橋血管中 細(xì)胞外基質(zhì)相關(guān)基因表達(dá)的特點(diǎn). 中國(guó)胸心血管外科臨床雜志, 2013, 20(1): 81-86. doi: 復(fù)制
版權(quán)信息: ?四川大學(xué)華西醫(yī)院華西期刊社《中國(guó)胸心血管外科臨床雜志》版權(quán)所有,未經(jīng)授權(quán)不得轉(zhuǎn)載、改編
1. | Foley RN, Parfrey PS, Sarnak MJ. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am J Kidney Dis, 1998, 32 (5):S112-S119. |
2. | Yerram P, Karuparthi PR, Hesemann L, et al. Chronic kidney disease and cardiovascular risk. J Am Soc Hypertens, 2007, 1 (3):178-184. |
3. | Goldman S, Zadina K, Moritz T, et al. Long-term patency of saphe nous vein and left internal mammary artery grafts after coronary artery bypass surgery:results from a Department of Veterans Affairs Cooperative Study. J Am Coll Cardiol, 2004, 44 (11):2149-2156. |
4. | George SJ, Wan S, Hu J, et al. Sustained reduction of vein graft neointima formation by ex vivo TIMP-3 gene therapy. Circulation, 2011, 124 (11 Suppl):S135-S142. |
5. | Dummler S, Eichhorn S, Tesche C, et al. Pulsatile ex vivo perfusion of human saphenous vein grafts under controlled pressure conditions increases MMP-2 expression. Biomed Eng Online, 2011, 10 (7):62-67. |
6. | Szczech LA, Reddan DN, Owen WF, et al. Differential survival after coronary revascularization procedures among patients with renal insufficiency. Kidney Int, 2001, 60 (1):292-299. |
7. | Orii K, Hioki M, Iedokoro Y, et al. Prognostic factors affecting clinical outcomes after coronary artery bypass surgery:analysis of patients with chronic kidney disease after 5.9 years of follow-up. J Nippon Med Sch, 2011, 78 (3):156-165. |
8. | Koh KH, Tan C, Hii L, et al. Outcome of coronary artery bypass grafting in end stage renal disease patients. Med J Malaysia, 2012, 67 (2):173-176. |
9. | Turner NA, Ho S, Warburton P, et al. Smooth muscle cells cultured from human saphenous vein exhibit increased proliferation, invasion, and mitogen-activated protein kinase activation in vitro compared with paired internal mammary artery cells. J Vasc Surg, 2007, 45 (5):1022-1028. |
10. | Mitra AK, Jia G, Gangahar DM, et al. Temporal PTEN inactivation causes proliferation of saphenous vein smooth muscle cells of human CABG conduits. J Cell Mol Med, 2009, 13 (1):177-187. |
11. | Mangi AA, Dzau VJ. Gene therapy for human bypass grafts. Ann Med, 2001, 33 (3):153-155. |
12. | NI Jun, Waldman A, Khachigian LM. c-Jun regulates shear- and injury-inducible Egr-1 expression, vein graft stenosis after autologous end-to-side transplantation in rabbits, and intimal hyperplasia in human saphenous veins. J Biol Chem, 2010, 285 (6):4038-4048. |
13. | Turner NA, Hall KT, Ball SG, et al. Selective gene silencing of either MMP-2 or MMP-9 inhibits invasion of human saphenous vein smooth muscle cells. Atherosclerosis, 2007, 193 (1):36-43. |
14. | Corpataux JM, Naik J, Porter KE, et al. A comparison of six statins on the development of intimal hyperplasia in a human vein culture model. Eur J Vasc Endovasc Surg, 2005, 29 (2):177-181. |
15. | Sunagawa G, Komiya T, Tamura N, et al. Coronary artery bypass surgery is superior to percutaneous coronary intervention with drug-eluting stents for patients with chronic renal failure on hemodialysis. Ann Thorac Surg, 2010, 89 (6):1896-1900. |
16. | Panichi V, Scatena A, Migliori M, et al. Biomarkers of chronic inflammatory state in uremia and cardiovascular disease. Int J Inflam, 2012, 2012:360147. |
- 1. Foley RN, Parfrey PS, Sarnak MJ. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am J Kidney Dis, 1998, 32 (5):S112-S119.
- 2. Yerram P, Karuparthi PR, Hesemann L, et al. Chronic kidney disease and cardiovascular risk. J Am Soc Hypertens, 2007, 1 (3):178-184.
- 3. Goldman S, Zadina K, Moritz T, et al. Long-term patency of saphe nous vein and left internal mammary artery grafts after coronary artery bypass surgery:results from a Department of Veterans Affairs Cooperative Study. J Am Coll Cardiol, 2004, 44 (11):2149-2156.
- 4. George SJ, Wan S, Hu J, et al. Sustained reduction of vein graft neointima formation by ex vivo TIMP-3 gene therapy. Circulation, 2011, 124 (11 Suppl):S135-S142.
- 5. Dummler S, Eichhorn S, Tesche C, et al. Pulsatile ex vivo perfusion of human saphenous vein grafts under controlled pressure conditions increases MMP-2 expression. Biomed Eng Online, 2011, 10 (7):62-67.
- 6. Szczech LA, Reddan DN, Owen WF, et al. Differential survival after coronary revascularization procedures among patients with renal insufficiency. Kidney Int, 2001, 60 (1):292-299.
- 7. Orii K, Hioki M, Iedokoro Y, et al. Prognostic factors affecting clinical outcomes after coronary artery bypass surgery:analysis of patients with chronic kidney disease after 5.9 years of follow-up. J Nippon Med Sch, 2011, 78 (3):156-165.
- 8. Koh KH, Tan C, Hii L, et al. Outcome of coronary artery bypass grafting in end stage renal disease patients. Med J Malaysia, 2012, 67 (2):173-176.
- 9. Turner NA, Ho S, Warburton P, et al. Smooth muscle cells cultured from human saphenous vein exhibit increased proliferation, invasion, and mitogen-activated protein kinase activation in vitro compared with paired internal mammary artery cells. J Vasc Surg, 2007, 45 (5):1022-1028.
- 10. Mitra AK, Jia G, Gangahar DM, et al. Temporal PTEN inactivation causes proliferation of saphenous vein smooth muscle cells of human CABG conduits. J Cell Mol Med, 2009, 13 (1):177-187.
- 11. Mangi AA, Dzau VJ. Gene therapy for human bypass grafts. Ann Med, 2001, 33 (3):153-155.
- 12. NI Jun, Waldman A, Khachigian LM. c-Jun regulates shear- and injury-inducible Egr-1 expression, vein graft stenosis after autologous end-to-side transplantation in rabbits, and intimal hyperplasia in human saphenous veins. J Biol Chem, 2010, 285 (6):4038-4048.
- 13. Turner NA, Hall KT, Ball SG, et al. Selective gene silencing of either MMP-2 or MMP-9 inhibits invasion of human saphenous vein smooth muscle cells. Atherosclerosis, 2007, 193 (1):36-43.
- 14. Corpataux JM, Naik J, Porter KE, et al. A comparison of six statins on the development of intimal hyperplasia in a human vein culture model. Eur J Vasc Endovasc Surg, 2005, 29 (2):177-181.
- 15. Sunagawa G, Komiya T, Tamura N, et al. Coronary artery bypass surgery is superior to percutaneous coronary intervention with drug-eluting stents for patients with chronic renal failure on hemodialysis. Ann Thorac Surg, 2010, 89 (6):1896-1900.
- 16. Panichi V, Scatena A, Migliori M, et al. Biomarkers of chronic inflammatory state in uremia and cardiovascular disease. Int J Inflam, 2012, 2012:360147.