• 四川大學(xué)華西醫(yī)院心血管外科,成都 610041;

目的對離體培養(yǎng)血管施加不同水平切應(yīng)力,觀察不同時間點(diǎn)整合素 αVβ3(αVβ3-Integrin)的表達(dá)水平。方法(1)建立血管體外應(yīng)力培養(yǎng)系統(tǒng),檢測不同切應(yīng)力時流場的穩(wěn)定性;(2)將家兔 50只按完全隨機(jī)分組方式分為兩組( n=25):低切應(yīng)力組( 5 dyn/cm2)和正常切應(yīng)力組( 20 dyn/cm2), 每組再完全隨機(jī)等分為 2 h、 4 h、8 h、16 h 和 24 h共 5個時間點(diǎn)( n=5),取兔降主動脈并將其置于應(yīng)力培養(yǎng)系統(tǒng)進(jìn)行離體培養(yǎng),采取免疫組織化學(xué)染色法觀察兩組 5個不同時間點(diǎn)的整合素 αVβ3表達(dá)部位及強(qiáng)度。結(jié)果建立的體外血管應(yīng)力培養(yǎng)系統(tǒng)運(yùn)行穩(wěn)定,能夠提供實驗所需的各種切應(yīng)力。低切應(yīng)力組的整合素 αVβ3在 5個時間點(diǎn)都有較高程度的表達(dá),并在 16 h時達(dá)到高峰,其平均光密度值 [MOD= (1.995±0.194)×10-2]明顯增高( P< 0.05);正常切應(yīng)力組隨時間的增加逐漸減少, 2 h [(0.059±0.005)×10-2]、4 h [(0.049±0.002)×10-2]時分別與其他時間點(diǎn)相比差異有統(tǒng)計學(xué)意義( P< 0.05)。低切應(yīng)力組的整合素 αVβ3 MOD值與正常切應(yīng)力組相同時間點(diǎn)比較明顯增( P=0.000)。結(jié)論低切應(yīng)力可引起 αVβ3明顯表達(dá),而正常切應(yīng)力抑制 αVβ3的表達(dá)。

引用本文: 蒙煒,肖正華,張爾永. 不同切應(yīng)力下血管內(nèi)皮整合素αVβ3的表達(dá). 中國胸心血管外科臨床雜志, 2012, 19(2): 172-176. doi: 復(fù)制

版權(quán)信息: ?四川大學(xué)華西醫(yī)院華西期刊社《中國胸心血管外科臨床雜志》版權(quán)所有,未經(jīng)授權(quán)不得轉(zhuǎn)載、改編

1. ?2 Shyy JY, Chien S. Role of integrins in endothelial mechanosensing of shear stress. Circ Res, 2002, 91 (9): 769-775.
2. ?3 Osborn EA, Rabodzey A, Dewey CF Jr, et a1. Endothelial actin cytoskeleton remodeling during mechanostimulation with fluid shear stress. Am J Physiol Cell Physiol, 2006, 290 (2): C444-C452.
3. ?4 Witmer AN, van Blijswijk BC, van Noorden CJ, et a1. In vivo angiogenic phenotype of endothelial cells and pericytes induced by vascular endothelial growth factor-A. J Histochem Cytochem, 2004, 52 (1): 39-52.
4. ?5 Orr AW, Ginsberg MH, Shattil SJ, et a1. Matrix-specific suppression of integrin activation in shear stress signaling. Mol Biol Cell, 2006, 17 (11): 4686-4697.
5. ?6 Sho E, Komatsu M, Sho M, et a1. High flow drives vascular endothelial cell proliferation during flow-induced arterial remodeling associated with the expression of vascular endothelial growth factor. Exp Mol Pathol, 2003, 75 (1): 1-11.
6. ?7 Urbich C, Walter DH, Zeiher AM, et a1. Laminar shear stress upregulates integrin expression: role in endothelial cell adhesion and apoptosis. Circ Res, 2000, 87 (8): 683-689.
7. ?8 張步春, 王安才, 李利芳, 等. 流體切應(yīng)力對人內(nèi)皮細(xì)胞遷移和整合素基因表達(dá)的影響. 中國微循環(huán), 2008, 12 (2):101-.
8. ?9 Ando J, Kamiya A. Blood flow and vascular endothelial cell function. Front Med Biol Eng, 1993, 5 (4): 245-264.
9. 姜宗來. 心血管生物力學(xué)研究的新進(jìn)展. 醫(yī)用生物力學(xué), 2010, 25 (5):313-315, 351..
10. Nerem RM, Alexander RW, Chappell DC, et a1. The study of the influence of flow on vascular endothelial biology. Am J Med Sci, 1998, 316 (3): 169-175.
11. Fung YC. Biodynamics: Circulation. New York:Springer-Verlag Inc, 1984. 136-142.
12. Moser M, Legate KR, Zent R, et a1.The tail of integrins,talin and kindlins. Science, 2009, 324 (5929): 895-899.
13. Kim M, Carman CV, Springer TA. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science, 2003, 301 (5640): 1720-1725.
14. 劉波, 姜宗來, 張炎, 等. 血管體外應(yīng)力培養(yǎng)系統(tǒng):一種新的血管生物力學(xué)實驗?zāi)P? 醫(yī)用生物力學(xué), 2001, 16 (4):225-230..
15. Bleiziffer S, Eichinger WB, Lange R. et a1. regarding article, “l(fā)ong-term outcomes after valve replacement for low-gradient aortic stenosis:impact of prosthesis-patient mismatch”. Circulation, 2006,114 (23): e627-e628.
16. 胡佳, 劉宸鋮, 吳江, 等. 流場壓力信號變化對內(nèi)皮細(xì)胞形態(tài)和黏附功能的影響. 生物醫(yī)學(xué)工程學(xué)雜志, 2008, 25 (6):1372-1376.
17. , 116.
  1. 1. ?2 Shyy JY, Chien S. Role of integrins in endothelial mechanosensing of shear stress. Circ Res, 2002, 91 (9): 769-775.
  2. 2. ?3 Osborn EA, Rabodzey A, Dewey CF Jr, et a1. Endothelial actin cytoskeleton remodeling during mechanostimulation with fluid shear stress. Am J Physiol Cell Physiol, 2006, 290 (2): C444-C452.
  3. 3. ?4 Witmer AN, van Blijswijk BC, van Noorden CJ, et a1. In vivo angiogenic phenotype of endothelial cells and pericytes induced by vascular endothelial growth factor-A. J Histochem Cytochem, 2004, 52 (1): 39-52.
  4. 4. ?5 Orr AW, Ginsberg MH, Shattil SJ, et a1. Matrix-specific suppression of integrin activation in shear stress signaling. Mol Biol Cell, 2006, 17 (11): 4686-4697.
  5. 5. ?6 Sho E, Komatsu M, Sho M, et a1. High flow drives vascular endothelial cell proliferation during flow-induced arterial remodeling associated with the expression of vascular endothelial growth factor. Exp Mol Pathol, 2003, 75 (1): 1-11.
  6. 6. ?7 Urbich C, Walter DH, Zeiher AM, et a1. Laminar shear stress upregulates integrin expression: role in endothelial cell adhesion and apoptosis. Circ Res, 2000, 87 (8): 683-689.
  7. 7. ?8 張步春, 王安才, 李利芳, 等. 流體切應(yīng)力對人內(nèi)皮細(xì)胞遷移和整合素基因表達(dá)的影響. 中國微循環(huán), 2008, 12 (2):101-.
  8. 8. ?9 Ando J, Kamiya A. Blood flow and vascular endothelial cell function. Front Med Biol Eng, 1993, 5 (4): 245-264.
  9. 9. 姜宗來. 心血管生物力學(xué)研究的新進(jìn)展. 醫(yī)用生物力學(xué), 2010, 25 (5):313-315, 351..
  10. 10. Nerem RM, Alexander RW, Chappell DC, et a1. The study of the influence of flow on vascular endothelial biology. Am J Med Sci, 1998, 316 (3): 169-175.
  11. 11. Fung YC. Biodynamics: Circulation. New York:Springer-Verlag Inc, 1984. 136-142.
  12. 12. Moser M, Legate KR, Zent R, et a1.The tail of integrins,talin and kindlins. Science, 2009, 324 (5929): 895-899.
  13. 13. Kim M, Carman CV, Springer TA. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science, 2003, 301 (5640): 1720-1725.
  14. 14. 劉波, 姜宗來, 張炎, 等. 血管體外應(yīng)力培養(yǎng)系統(tǒng):一種新的血管生物力學(xué)實驗?zāi)P? 醫(yī)用生物力學(xué), 2001, 16 (4):225-230..
  15. 15. Bleiziffer S, Eichinger WB, Lange R. et a1. regarding article, “l(fā)ong-term outcomes after valve replacement for low-gradient aortic stenosis:impact of prosthesis-patient mismatch”. Circulation, 2006,114 (23): e627-e628.
  16. 16. 胡佳, 劉宸鋮, 吳江, 等. 流場壓力信號變化對內(nèi)皮細(xì)胞形態(tài)和黏附功能的影響. 生物醫(yī)學(xué)工程學(xué)雜志, 2008, 25 (6):1372-1376.
  17. 17. , 116.