• 昆明醫(yī)科大學(xué)第一附屬醫(yī)院運動醫(yī)學(xué)科(昆明,650032);

目的總結(jié)膝關(guān)節(jié)三維數(shù)字化模型的應(yīng)用及相關(guān)研究進展。 方法查閱近年國內(nèi)外膝關(guān)節(jié)三維數(shù)字化模型臨床應(yīng)用和基礎(chǔ)研究的相關(guān)文獻,并進行綜合分析。 結(jié)果膝關(guān)節(jié)三維數(shù)字化模型可較好地模擬膝關(guān)節(jié)復(fù)雜解剖結(jié)構(gòu),并利用此優(yōu)勢開發(fā)出了許多新軟件和新技術(shù),其臨床應(yīng)用取得了良好效果。 結(jié)論隨著計算機技術(shù)的發(fā)展和相關(guān)軟件的開發(fā),傳統(tǒng)膝關(guān)節(jié)修復(fù)重建手術(shù)方式不斷改變,手術(shù)操作將更簡便,精確性將進一步提高。

引用本文: 仝路,李彥林,胡猛. 三維數(shù)字化模型在膝關(guān)節(jié)修復(fù)重建中的應(yīng)用進展. 中國修復(fù)重建外科雜志, 2013, 27(1): 50-53. doi: 復(fù)制

版權(quán)信息: ?四川大學(xué)華西醫(yī)院華西期刊社《中國修復(fù)重建外科雜志》版權(quán)所有,未經(jīng)授權(quán)不得轉(zhuǎn)載、改編

1. Yoon KH, Kim YH, Ha JH, et al. Biomechanical evaluation of double bundle augmentation of posterior cruciate ligament using finite element analysis. Clin Biomech (Bristol, Avon), 2010, 25(10): 1042-1046.
2. Bougherara H, Zdero R, Mahboob Z, et al. The biomechanics of a validated finite element model of stress shielding in a novel hybrid total knee replacement. Proc Inst Mech Eng H, 2010, 224(10): 1209-1219.
3. Kobayashi A, Ishii Y, Takeda M, et al. Comparison of analog 2D and digital 3D preoperative templating for predicting implant size in total knee arthroplasty. Comput Aided Surg, 2012, 17(2): 96-101.
4. Dumas R, Moissenet F, Gasparutto X, et al. Influence of joint models on lower-limb musculo-tendon forces and three-dimensional joint reaction forces during gait. Proc Inst Mech Eng H, 2012, 226(2): 146-160.
5. 王大忠, 余正紅, 周民強, 等. 3D膝關(guān)節(jié)模型的構(gòu)建. 中國組織工程研究與臨床康復(fù), 2010, 14(48): 8945-8949.
6. 陳文棟, 李彥林, 許鵬, 等. 正常人與尸體膝關(guān)節(jié)MRI二維圖像重建前交叉韌帶三維模型的比較研究. 中國修復(fù)重建外科雜志, 2011, 25(11): 1314-1318.
7. 許鵬, 李彥林, 陳文棟, 等. MRI影像下股骨髁間窩三維數(shù)字化解剖學(xué)數(shù)據(jù)與實體解剖測量值的差異. 中國組織工程研究與臨床康復(fù), 2011, 15(43): 8006-8009.
8. 王建平, 韓雪蓮, 季文婷, 等. 人體膝脛股關(guān)節(jié)相對運動的三維圖像配準分析. 生物醫(yī)學(xué)工程學(xué)雜志, 2009, 26(6): 1340-1344.
9. Zhang X, Jiang G, Wu C, et al. A subject-specific finite element model of the anterior cruciate ligament. Conf Proc IEEE Eng Med Biol Soc, 2008, 2008: 891-894.
10. Nikolopoulos CE, Mavrogenis AF, Petrocheilou G, et al. A three-dimensional medical imaging model for quantitative assessment of proximal tibia vs. anterior iliac crest cancellous bone. Knee, 2008, 15(3): 233-237.
11. D’Lima DD, Chen PC, Kessler O, et al. Effect of meniscus replacement fixation technique on restoration of knee contact mechanics and stability. Mol Cell Biomech, 2011, 8(2): 123-134.
12. Rahemi H, Farahmand F, Rezaeian T, et al. Computer simulation of knee arthrometry to study the effects of partial ACL injury and tibiofemoral contact. Conf Proc IEEE Eng Med Biol Soc, 2008, 2008: 895-898.
13. Martelli S, Lopomo N, Bignozzi S, et al. Validation of a new protocol for navigated intraoperative assessment of knee kinematics. Comput Biol Med, 2007, 37(6): 872-878.
14. Koo S, Giori NJ, Gold GE, et al. Accuracy of 3D cartilage models generated from MR images is dependent on cartilage thickness: laser scanner based validation of in vivo cartilage. J Biomech Eng, 2009, 131(12): 121004.
15. Xiao M, Higginson JS. Muscle function may depend on model selection in forward simulation of normal walking. J Biomech, 2008, 41(15): 3236-3242.
16. Chang CY, Rupp JD, Reed MP, et al. Predicting the effects of muscle activation on knee, thigh, and hip injuries in frontal crashes using a finite-element model with muscle forces from subject testing and musculoskeletal modeling. Stapp Car Crash J, 2009, 53: 291-328.
17. Yamada Y, Toritsuka Y, Horibe S, et al. In vivo movement analysis of the patella using a three-dimensional computer model. J Bone Joint Surg (Br), 2007, 89(6): 752-760.
18. Hunter BV, Thelen DG, Dhaher YY. A three-dimensional biomechanical evaluation of quadriceps and hamstrings function using electrical stimulation. IEEE Trans Neural Syst Rehabil Eng, 2009, 17(2): 167-175.
19. Martelli S, Zaffagnini S, Bignozzi S, et al. Validation of a new protocol for computer-assisted evaluation of kinematics of double-bundle ACL reconstruction. Clin Biomech (Bristol, Avon), 2006, 21(3): 279-287.
20. Xie F, Yang L, Guo L, et al. A study on construction three-dimensional nonlinear finite element model and stress distribution analysis of anterior cruciate ligament. J Biomech Eng, 2009, 131(12): 1-6.
21. Gruionu LG, Gruionu G, Pastrama S, et al. Contact studies between total knee replacement components developed using explicit finite elements analysis. Med Image Comput Comput Assist Interv, 2009, 12(Pt 2): 316-322.
22. Gan Y, Xu D, Lu S, et al. Novel patient-specific navigational template for total knee arthroplasty. Comput Aided Surg, 2011, 16(6): 288-297.
23. Schmutz B, Rathnayaka K, Wullschleger ME, et al. Quantitative fit assessment of tibial nail designs using 3D computer modeling. Injury, 2010, 41(2): 216-219.
24. Hofbauer M, Valentin P, Kdolsky R, et al. Rotational and translational laxity after computer-navigated single- and double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc, 2010, 18(9): 1201-1207.
25. Chong DY, Hansen UN, van der Venne R, et al. The influence of tibial component fixation techniques on resorption of supporting bone stock after total knee replacement. J Biomech, 2011, 44(5): 948-954.
26. Innocenti B, Pianigiani S, Labey L, et al. Contact forces in several TKA designs during squatting: A numerical sensitivity analysis. J Biomech, 2011, 44(8): 1573-1581.
27. Mason JB, Fehring TK, Estok R, et al. Meta-analysis of alignment outcomes in computer-assisted total knee arthroplasty surgery. J Arthroplasty, 2007, 22(8): 1097-1106.
28. Tigani D, Rimondi E, Trentani P, et al. Three-dimensional analysis of image-free navigation system for total knee arthroplasty. Musculoskelet Surg, 2011, 95(2): 81-87.
29. Kim HY, Seo YJ, Kim HJ, et al. Tension changes within the bundles of anatomic double-bundle anterior cruciate ligament reconstruction at different knee flexion angles: a study using a 3-dimensional finite element model. Arthroscopy, 2011, 27(10): 1400-1408.
30. Wang J, Ye M, Liu Z, et al. Precision of cortical bone reconstruction based on 3D CT scans. Comput Med Imaging Graph, 2009, 33(3): 235-241.
  1. 1. Yoon KH, Kim YH, Ha JH, et al. Biomechanical evaluation of double bundle augmentation of posterior cruciate ligament using finite element analysis. Clin Biomech (Bristol, Avon), 2010, 25(10): 1042-1046.
  2. 2. Bougherara H, Zdero R, Mahboob Z, et al. The biomechanics of a validated finite element model of stress shielding in a novel hybrid total knee replacement. Proc Inst Mech Eng H, 2010, 224(10): 1209-1219.
  3. 3. Kobayashi A, Ishii Y, Takeda M, et al. Comparison of analog 2D and digital 3D preoperative templating for predicting implant size in total knee arthroplasty. Comput Aided Surg, 2012, 17(2): 96-101.
  4. 4. Dumas R, Moissenet F, Gasparutto X, et al. Influence of joint models on lower-limb musculo-tendon forces and three-dimensional joint reaction forces during gait. Proc Inst Mech Eng H, 2012, 226(2): 146-160.
  5. 5. 王大忠, 余正紅, 周民強, 等. 3D膝關(guān)節(jié)模型的構(gòu)建. 中國組織工程研究與臨床康復(fù), 2010, 14(48): 8945-8949.
  6. 6. 陳文棟, 李彥林, 許鵬, 等. 正常人與尸體膝關(guān)節(jié)MRI二維圖像重建前交叉韌帶三維模型的比較研究. 中國修復(fù)重建外科雜志, 2011, 25(11): 1314-1318.
  7. 7. 許鵬, 李彥林, 陳文棟, 等. MRI影像下股骨髁間窩三維數(shù)字化解剖學(xué)數(shù)據(jù)與實體解剖測量值的差異. 中國組織工程研究與臨床康復(fù), 2011, 15(43): 8006-8009.
  8. 8. 王建平, 韓雪蓮, 季文婷, 等. 人體膝脛股關(guān)節(jié)相對運動的三維圖像配準分析. 生物醫(yī)學(xué)工程學(xué)雜志, 2009, 26(6): 1340-1344.
  9. 9. Zhang X, Jiang G, Wu C, et al. A subject-specific finite element model of the anterior cruciate ligament. Conf Proc IEEE Eng Med Biol Soc, 2008, 2008: 891-894.
  10. 10. Nikolopoulos CE, Mavrogenis AF, Petrocheilou G, et al. A three-dimensional medical imaging model for quantitative assessment of proximal tibia vs. anterior iliac crest cancellous bone. Knee, 2008, 15(3): 233-237.
  11. 11. D’Lima DD, Chen PC, Kessler O, et al. Effect of meniscus replacement fixation technique on restoration of knee contact mechanics and stability. Mol Cell Biomech, 2011, 8(2): 123-134.
  12. 12. Rahemi H, Farahmand F, Rezaeian T, et al. Computer simulation of knee arthrometry to study the effects of partial ACL injury and tibiofemoral contact. Conf Proc IEEE Eng Med Biol Soc, 2008, 2008: 895-898.
  13. 13. Martelli S, Lopomo N, Bignozzi S, et al. Validation of a new protocol for navigated intraoperative assessment of knee kinematics. Comput Biol Med, 2007, 37(6): 872-878.
  14. 14. Koo S, Giori NJ, Gold GE, et al. Accuracy of 3D cartilage models generated from MR images is dependent on cartilage thickness: laser scanner based validation of in vivo cartilage. J Biomech Eng, 2009, 131(12): 121004.
  15. 15. Xiao M, Higginson JS. Muscle function may depend on model selection in forward simulation of normal walking. J Biomech, 2008, 41(15): 3236-3242.
  16. 16. Chang CY, Rupp JD, Reed MP, et al. Predicting the effects of muscle activation on knee, thigh, and hip injuries in frontal crashes using a finite-element model with muscle forces from subject testing and musculoskeletal modeling. Stapp Car Crash J, 2009, 53: 291-328.
  17. 17. Yamada Y, Toritsuka Y, Horibe S, et al. In vivo movement analysis of the patella using a three-dimensional computer model. J Bone Joint Surg (Br), 2007, 89(6): 752-760.
  18. 18. Hunter BV, Thelen DG, Dhaher YY. A three-dimensional biomechanical evaluation of quadriceps and hamstrings function using electrical stimulation. IEEE Trans Neural Syst Rehabil Eng, 2009, 17(2): 167-175.
  19. 19. Martelli S, Zaffagnini S, Bignozzi S, et al. Validation of a new protocol for computer-assisted evaluation of kinematics of double-bundle ACL reconstruction. Clin Biomech (Bristol, Avon), 2006, 21(3): 279-287.
  20. 20. Xie F, Yang L, Guo L, et al. A study on construction three-dimensional nonlinear finite element model and stress distribution analysis of anterior cruciate ligament. J Biomech Eng, 2009, 131(12): 1-6.
  21. 21. Gruionu LG, Gruionu G, Pastrama S, et al. Contact studies between total knee replacement components developed using explicit finite elements analysis. Med Image Comput Comput Assist Interv, 2009, 12(Pt 2): 316-322.
  22. 22. Gan Y, Xu D, Lu S, et al. Novel patient-specific navigational template for total knee arthroplasty. Comput Aided Surg, 2011, 16(6): 288-297.
  23. 23. Schmutz B, Rathnayaka K, Wullschleger ME, et al. Quantitative fit assessment of tibial nail designs using 3D computer modeling. Injury, 2010, 41(2): 216-219.
  24. 24. Hofbauer M, Valentin P, Kdolsky R, et al. Rotational and translational laxity after computer-navigated single- and double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc, 2010, 18(9): 1201-1207.
  25. 25. Chong DY, Hansen UN, van der Venne R, et al. The influence of tibial component fixation techniques on resorption of supporting bone stock after total knee replacement. J Biomech, 2011, 44(5): 948-954.
  26. 26. Innocenti B, Pianigiani S, Labey L, et al. Contact forces in several TKA designs during squatting: A numerical sensitivity analysis. J Biomech, 2011, 44(8): 1573-1581.
  27. 27. Mason JB, Fehring TK, Estok R, et al. Meta-analysis of alignment outcomes in computer-assisted total knee arthroplasty surgery. J Arthroplasty, 2007, 22(8): 1097-1106.
  28. 28. Tigani D, Rimondi E, Trentani P, et al. Three-dimensional analysis of image-free navigation system for total knee arthroplasty. Musculoskelet Surg, 2011, 95(2): 81-87.
  29. 29. Kim HY, Seo YJ, Kim HJ, et al. Tension changes within the bundles of anatomic double-bundle anterior cruciate ligament reconstruction at different knee flexion angles: a study using a 3-dimensional finite element model. Arthroscopy, 2011, 27(10): 1400-1408.
  30. 30. Wang J, Ye M, Liu Z, et al. Precision of cortical bone reconstruction based on 3D CT scans. Comput Med Imaging Graph, 2009, 33(3): 235-241.