目的 綜述鍶(Sr)的成骨效應(yīng)及其在骨科中應(yīng)用的研究進展。 方法廣泛查閱近年國內(nèi)外有關(guān)Sr成骨效應(yīng)及其在骨科中應(yīng)用的文獻,并對其進行分析。 結(jié)果體內(nèi)外研究表明Sr具有促進骨生成和抑制骨重吸收的雙重作用。臨床上,Sr被應(yīng)用于骨質(zhì)疏松的治療,組織工程生物材料的復(fù)合及骨腫瘤、骨轉(zhuǎn)移瘤的治療。 結(jié)論Sr是骨組織工程替代材料的重要復(fù)合元素之一,能增強骨替代材料的機械性能和生物學(xué)性能,在骨組織工程中有一定發(fā)展?jié)?力。
引用本文: 李蕾,雷云坤,孟增東. 鍶的成骨效應(yīng)及其在骨科中應(yīng)用的研究進展. 中國修復(fù)重建外科雜志, 2012, 26(11): 1398-1402. doi: 復(fù)制
版權(quán)信息: ?四川大學(xué)華西醫(yī)院華西期刊社《中國修復(fù)重建外科雜志》版權(quán)所有,未經(jīng)授權(quán)不得轉(zhuǎn)載、改編
1. | Langer R, Vacanti P. Tissue engineering. Science, 1993, 260(5110): 920-926. |
2. | Dahl SG, Allain P, Marie PJ, et al. Incorporation and distribution of strontium in bone. Bone, 2001, 28(4): 446-453. |
3. | Reginster JY, Deroisy R, Jupsin I. Strontium ranelate: a new paradigm in the treatment of osteoporosis. Drugs Today (Barc), 2003, 39(2): 89-101. |
4. | Jupsin I, Collette J, Henrotin Y, et al. Strontium ranelate (Fujisawa/Servier). Curr Opin Investig Drugs, 2005, 6(4): 435-444. |
5. | Marie PJ. Strontium ranelate: a novel mode of action optimizing bone formation and resorption. Osteoporos Int, 2005, 16 Suppl 1: S7-10. |
6. | Bonnelye E, Chabadel A, Saltel F, et al. Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone, 2008, 42(1): 129-138. |
7. | Reginster JY, Deroisy R, Neuprez A, et al. Strontium ranelate: new data on fracture prevention and mechanisms of action. Curr Osteoporos Rep, 2009, 7(3): 96-102. |
8. | Fromigué O, Haÿ E, Barbara AE, et al. Essential role of nuclear factor of activated T cells (NFAT)-mediated Wnt signaling in osteoblast differentiation induced by strontium ranelate. J Biol Chem, 2010, 285(33): 25251-25258. |
9. | Trouvin AP, Goëb V. Receptor activator of nuclear factor-κB ligand and osteoprotegerin: maintaining the balance to prevent bone loss. Clin Interv Aging, 2010, 5: 345-354. |
10. | Paes FM, Serafini AN. Systemic metabolic radiopharmaceutical therapy in the treatment of metastatic bone pain. Semin Nucl Med, 2010, 40(2): 89-104. |
11. | Das T, Chakraborty S, Sarma HD, et al. (170)Tm-EDTMP: a potential cost-effective alternative to (89)SrCl(2) for bone pain palliation. Nucl Med Biol, 2009, 36(5): 561-568. |
12. | Römer P, Behr M, Proff P, et al. Effect of strontium on human Runx2+/- osteoblasts from a patient with cleidocranial dysplasia. Eur J Pharmacol, 2011, 654(3): 195-199. |
13. | Peng S, Liu XS, Huang S, et al. The cross-talk between osteoclasts and osteoblasts in response to strontium treatment: involvement of osteoprotegerin. Bone, 2011, 49(6): 1290-1298. |
14. | Yamaguchi M, Weitzmann MN. The intact strontium ranelate complex stimulates osteoblastogenesis and suppresses osteoclastogenesis by antagonizing NF-κB activation. Mol Cell Biochem, 2011, 359(1-2): 399-407. |
15. | Rybchyn MS, Slater M, Conigrave AD, et al. An Akt-dependent increase in canonical Wnt signaling and a decrease in sclerostin protein levels are involved in strontium ranelate-induced osteogenic effects in human osteoblasts. J Biol Chem, 2011, 286(27): 23771-23779. |
16. | Yang F, Yang D, Tu J, et al. Strontium enhances osteogenic differentiation of mesenchymal stem cells and in vivo bone formation by activating Wnt/catenin signaling. Stem Cells, 2011, 29(6): 981-991. |
17. | Caverzasio J, Thouverey C. Activation of FGF receptors is a new mechanism by which strontium ranelate induces osteoblastic cell growth. Cell Physiol Biochem, 2011, 27(3-4): 243-250. |
18. | Braux J, Velard F, Guillaume C, et al. A new insight into the dissociating effect of strontium on bone resorption and formation. Acta Biomater, 2011, 7(6): 2593-2603. |
19. | Ma HT, Peng Z, Hiragun T, et al. Canonical transient receptor potential 5 channel in conjunction with Orai1 and STIM1 allows Sr2+ entry, optimal influx of Ca2+, and degranulation in a rat mast cell line. J Immunol, 2008, 180(4): 2233-2239. |
20. | Caudrillier A, Hurtel-Lemaire AS, Wattel A, et al. Strontium ranelate decreases receptor activator of nuclear factor-κB ligand-induced osteoclastic differentiation in vitro: involvement of the calcium-sensing receptor. Mol Pharmacol, 2010, 78(4): 569-576. |
21. | Takaoka S, Yamaguchi T, Yano S, et al. The Calcium-sensing Receptor (CaR) is involved in strontium ranelate-induced osteoblast differentiation and mineralization. Horm Metab Res, 2010, 42(9): 627-631. |
22. | Coulombe J, Fauren H, Robin B, et al. In vitro effects of strontium ranelate on the extracellular calcium-sensing receptor. Biochem Biophys Res Commun, 2004, 323(4): 1184-1190. |
23. | Verberckmoes SC, De Broe ME, D’Haese PC. Dose-dependent effects of strontium on osteoblast function and mineralization. Kidney Int, 2003, 64(2): 534-543. |
24. | 謝玲, 裴志東, 薛琪. 89鍶治療骨轉(zhuǎn)移性癌痛的臨床觀察. 中國鄉(xiāng)村醫(yī)藥, 2008, 15(5): 19-20. |
25. | 祁崗, 于梅花, 朱艷媚, 等. 90鍶敷貼器治療皮膚血管瘤療效觀察. 新醫(yī)學(xué), 2011, 42(4): 260-262. |
26. | MacDonald NS, Nusbaum RE, Stcarns R, et al. The skeletal deposition of non-radioactivc strontium. J Biol Chem, 1951, 188(1): 137-143. |
27. | Boivin G, Deloffre P, Perrat B, et al. Strontium distribution and interactions with bone mineral in monkey iliac bone after strontium salt (S 12911) administration. J Bone Miner Res, 1996, 11(9): 1302-1311. |
28. | Brennan TC, Rybchyn MS, Green W, et al. Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br J Pharmacol, 2009, 157(7): 1291-1300. |
29. | Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 1998, 93(2): 165-176. |
30. | Schoppet M, Preissner KT, Hofbauer LC. RANK ligand and osteoprotegerin: paracrine regulators of bone metabolism and vascular function. Arterioscler Thromb Vasc Biol, 2002, 22(4): 549-553. |
31. | Kong YY, Yoshida H, Sarosi I, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature, 1999, 397(6717): 315-323. |
32. | Khosla S. Minireview: the OPG/RANKL/RANK system. Endocrinology, 2001, 142(12): 5050-5055. |
33. | Ali MM, Yoshizawa T, Ishibashi O. PIASxbeta is a key regulator of osterix transcriptional activity and matrix mineralization in osteoblasts. J Cell Sci, 2007, 120(Pt 15): 2565-2573. |
34. | Aliprantis AO, Ueki Y, Sulyanto R, et al. NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism. J Clin Invest, 2008, 118(11): 3775-3789. |
35. | Ikeda F, Nishimura R, Matsubara T, et al. Activation of NFAT signal in vivo leads to osteopenia associated with increased osteoclastogenesis and bone-resorbing activity. J Immunol, 2006, 177(4): 2384-2390. |
36. | Guo J, Jin J, Cooper LF. Dissection of sets of genes that control the character of wnt5a-deficient mouse calvarial cells. Bone, 2008, 43(5): 961-971. |
37. | Cheng SL, Shao JS, Cai J, et al. Msx2 exerts bone anabolism via canonical Wnt signaling. J Biol Chem, 2008, 283(29): 20505-20522. |
38. | Fromigué O, Haÿ E, Barbara A, et al. Calcium sensing receptor-dependent and receptor-independent activation of osteoblast replication and survival by strontium ranelate. J Cell Mol Med, 2009, 13(8B): 2189-2199. |
39. | Dong SW, Ying DJ, Duan XJ, et al. Bone regeneration using an acellular extracellular matrix and bone marrow mesenchymal stem cells expressing Cbfα1. Biosci Biotechnol Biochem, 2009, 73(10): 2226-2233. |
40. | Hamdy NA. Strontium ranelate improves bone microarchitecture in osteoporosis. Rheumatology (Oxford), 2009, 48 Suppl 4: iv9-13. |
41. | Cesareo R, Napolitano C, Iozzino M. Strontium ranelate in postmenopausal osteoporosis treatment: a critical appraisal. Int J Womens Health, 2010, 2: 1-6. |
42. | Kay MI, Young RA, Posner AS. Crystal structure of hydroxyapatite. Nature, 1964, 204: 1050-1052. |
43. | 陳德敏, 傅飛遠. 不同含鍶量的摻鍶羥基磷灰石固溶體機械性能評價. 口腔材料器械雜志, 2001, 10(4): 178-179. |
44. | 倪國新, 呂維加, 曲廣運, 等. 鍶羥基磷灰石生物活性骨水泥應(yīng)用于髖關(guān)節(jié)置換的研究. 中華創(chuàng)傷骨科組織, 2007, 9(8): 708-710. |
45. | 閆鈞, 張玉梅, 憨勇, 等. 鍶磷灰石涂層鈦種植體骨結(jié)合的動物實驗. 中華口腔醫(yī)學(xué)雜志, 2010, 45(2): 89-93. |
46. | 廖大鵬, 周正炎, 顧云峰, 等. 鍶磷灰石生物特性的初步研究. 華西口腔醫(yī)學(xué)雜志, 2002, 20(3): 172-174. |
47. | 李峰, 趙信義. 含鍶磷酸鈣骨水泥體內(nèi)降解性能. 生物醫(yī)學(xué)工程與臨床, 2006, 10(4): 210-213. |
48. | 陳德敏, 劉雪陽. 鍶磷灰石多孔陶瓷不同孔隙率對成骨細(xì)胞生物學(xué)行為的影響. 組織工程與重建外科雜志, 2006, 2(3): 123-127. |
49. | 余喜訊, 陳元維, 史國齊, 等. 摻鍶聚磷酸鈣骨組織工程支架材料與成骨細(xì)胞及內(nèi)皮細(xì)胞的相容性研究. 中國組織工程研究與臨床康復(fù), 2007, 11(5): 857-860. |
50. | 傅飛遠, 陳德敏, 張建中. MTT比色法評價摻鍶羥基磷灰石固溶體細(xì)胞毒性. 生物醫(yī)學(xué)工程雜志, 2001, 18(3): 389-390, 415. |
51. | 郝瑞然, 王德平. 改性硼硅酸鹽生物玻璃的可控降解性能. 中國組織工程研究與臨床康復(fù), 2008, 12(10): 1962-1965. |
52. | Pan HB, Zhao XL, Zhang X, et al. Strontium borate glass: potential biomaterial for bone regeneration. J R Soc Interface, 2010, 7(48): 1025-1031. |
53. | Pina S, Vieira SI, Rego P, et al. Biological responses of brushite-forming Zn- and ZnSr-substituted beta-tricalcium phosphate bone cements. Eur Cell Mater, 2010 , 20: 162-177. |
54. | 余喜訊, 顧志鵬, 任大偉, 等. 新型骨科材料SCPP對成骨細(xì)胞促血管化生長因子表達影響的研究. 四川大學(xué)學(xué)報: 工程科學(xué)版, 2011, 43(1): 219-225. |
55. | 王楠, 郝永強, 何國, 等. 纖維多孔鈦微球復(fù)合納米鍶磷灰石修復(fù)骨缺損的實驗研究. 中華骨科雜志, 2009, 29(7): 672-676. |
56. | 朱廣文, 張延軍, 李鍵, 等. 核素Sr-89治療前列腺癌骨轉(zhuǎn)移臨床價值及血清tPSA變化的研究. 放射免疫學(xué)雜志, 2009, 22(1): 6-7. |
57. | 胥杰, 陳曉. 89Sr治療30例肺癌多發(fā)骨轉(zhuǎn)移的療效觀察. 中國呼吸與危重監(jiān)護雜志, 2008, 7(2): 104-106. |
58. | Logothetis CJ, Navone NM, Lin SH. Understanding the biology of bone metastases: key to the effective treatment of prostate cancer. Clin Cancer Res, 2008, 14(6): 1599-1602. |
- 1. Langer R, Vacanti P. Tissue engineering. Science, 1993, 260(5110): 920-926.
- 2. Dahl SG, Allain P, Marie PJ, et al. Incorporation and distribution of strontium in bone. Bone, 2001, 28(4): 446-453.
- 3. Reginster JY, Deroisy R, Jupsin I. Strontium ranelate: a new paradigm in the treatment of osteoporosis. Drugs Today (Barc), 2003, 39(2): 89-101.
- 4. Jupsin I, Collette J, Henrotin Y, et al. Strontium ranelate (Fujisawa/Servier). Curr Opin Investig Drugs, 2005, 6(4): 435-444.
- 5. Marie PJ. Strontium ranelate: a novel mode of action optimizing bone formation and resorption. Osteoporos Int, 2005, 16 Suppl 1: S7-10.
- 6. Bonnelye E, Chabadel A, Saltel F, et al. Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone, 2008, 42(1): 129-138.
- 7. Reginster JY, Deroisy R, Neuprez A, et al. Strontium ranelate: new data on fracture prevention and mechanisms of action. Curr Osteoporos Rep, 2009, 7(3): 96-102.
- 8. Fromigué O, Haÿ E, Barbara AE, et al. Essential role of nuclear factor of activated T cells (NFAT)-mediated Wnt signaling in osteoblast differentiation induced by strontium ranelate. J Biol Chem, 2010, 285(33): 25251-25258.
- 9. Trouvin AP, Goëb V. Receptor activator of nuclear factor-κB ligand and osteoprotegerin: maintaining the balance to prevent bone loss. Clin Interv Aging, 2010, 5: 345-354.
- 10. Paes FM, Serafini AN. Systemic metabolic radiopharmaceutical therapy in the treatment of metastatic bone pain. Semin Nucl Med, 2010, 40(2): 89-104.
- 11. Das T, Chakraborty S, Sarma HD, et al. (170)Tm-EDTMP: a potential cost-effective alternative to (89)SrCl(2) for bone pain palliation. Nucl Med Biol, 2009, 36(5): 561-568.
- 12. Römer P, Behr M, Proff P, et al. Effect of strontium on human Runx2+/- osteoblasts from a patient with cleidocranial dysplasia. Eur J Pharmacol, 2011, 654(3): 195-199.
- 13. Peng S, Liu XS, Huang S, et al. The cross-talk between osteoclasts and osteoblasts in response to strontium treatment: involvement of osteoprotegerin. Bone, 2011, 49(6): 1290-1298.
- 14. Yamaguchi M, Weitzmann MN. The intact strontium ranelate complex stimulates osteoblastogenesis and suppresses osteoclastogenesis by antagonizing NF-κB activation. Mol Cell Biochem, 2011, 359(1-2): 399-407.
- 15. Rybchyn MS, Slater M, Conigrave AD, et al. An Akt-dependent increase in canonical Wnt signaling and a decrease in sclerostin protein levels are involved in strontium ranelate-induced osteogenic effects in human osteoblasts. J Biol Chem, 2011, 286(27): 23771-23779.
- 16. Yang F, Yang D, Tu J, et al. Strontium enhances osteogenic differentiation of mesenchymal stem cells and in vivo bone formation by activating Wnt/catenin signaling. Stem Cells, 2011, 29(6): 981-991.
- 17. Caverzasio J, Thouverey C. Activation of FGF receptors is a new mechanism by which strontium ranelate induces osteoblastic cell growth. Cell Physiol Biochem, 2011, 27(3-4): 243-250.
- 18. Braux J, Velard F, Guillaume C, et al. A new insight into the dissociating effect of strontium on bone resorption and formation. Acta Biomater, 2011, 7(6): 2593-2603.
- 19. Ma HT, Peng Z, Hiragun T, et al. Canonical transient receptor potential 5 channel in conjunction with Orai1 and STIM1 allows Sr2+ entry, optimal influx of Ca2+, and degranulation in a rat mast cell line. J Immunol, 2008, 180(4): 2233-2239.
- 20. Caudrillier A, Hurtel-Lemaire AS, Wattel A, et al. Strontium ranelate decreases receptor activator of nuclear factor-κB ligand-induced osteoclastic differentiation in vitro: involvement of the calcium-sensing receptor. Mol Pharmacol, 2010, 78(4): 569-576.
- 21. Takaoka S, Yamaguchi T, Yano S, et al. The Calcium-sensing Receptor (CaR) is involved in strontium ranelate-induced osteoblast differentiation and mineralization. Horm Metab Res, 2010, 42(9): 627-631.
- 22. Coulombe J, Fauren H, Robin B, et al. In vitro effects of strontium ranelate on the extracellular calcium-sensing receptor. Biochem Biophys Res Commun, 2004, 323(4): 1184-1190.
- 23. Verberckmoes SC, De Broe ME, D’Haese PC. Dose-dependent effects of strontium on osteoblast function and mineralization. Kidney Int, 2003, 64(2): 534-543.
- 24. 謝玲, 裴志東, 薛琪. 89鍶治療骨轉(zhuǎn)移性癌痛的臨床觀察. 中國鄉(xiāng)村醫(yī)藥, 2008, 15(5): 19-20.
- 25. 祁崗, 于梅花, 朱艷媚, 等. 90鍶敷貼器治療皮膚血管瘤療效觀察. 新醫(yī)學(xué), 2011, 42(4): 260-262.
- 26. MacDonald NS, Nusbaum RE, Stcarns R, et al. The skeletal deposition of non-radioactivc strontium. J Biol Chem, 1951, 188(1): 137-143.
- 27. Boivin G, Deloffre P, Perrat B, et al. Strontium distribution and interactions with bone mineral in monkey iliac bone after strontium salt (S 12911) administration. J Bone Miner Res, 1996, 11(9): 1302-1311.
- 28. Brennan TC, Rybchyn MS, Green W, et al. Osteoblasts play key roles in the mechanisms of action of strontium ranelate. Br J Pharmacol, 2009, 157(7): 1291-1300.
- 29. Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 1998, 93(2): 165-176.
- 30. Schoppet M, Preissner KT, Hofbauer LC. RANK ligand and osteoprotegerin: paracrine regulators of bone metabolism and vascular function. Arterioscler Thromb Vasc Biol, 2002, 22(4): 549-553.
- 31. Kong YY, Yoshida H, Sarosi I, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature, 1999, 397(6717): 315-323.
- 32. Khosla S. Minireview: the OPG/RANKL/RANK system. Endocrinology, 2001, 142(12): 5050-5055.
- 33. Ali MM, Yoshizawa T, Ishibashi O. PIASxbeta is a key regulator of osterix transcriptional activity and matrix mineralization in osteoblasts. J Cell Sci, 2007, 120(Pt 15): 2565-2573.
- 34. Aliprantis AO, Ueki Y, Sulyanto R, et al. NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism. J Clin Invest, 2008, 118(11): 3775-3789.
- 35. Ikeda F, Nishimura R, Matsubara T, et al. Activation of NFAT signal in vivo leads to osteopenia associated with increased osteoclastogenesis and bone-resorbing activity. J Immunol, 2006, 177(4): 2384-2390.
- 36. Guo J, Jin J, Cooper LF. Dissection of sets of genes that control the character of wnt5a-deficient mouse calvarial cells. Bone, 2008, 43(5): 961-971.
- 37. Cheng SL, Shao JS, Cai J, et al. Msx2 exerts bone anabolism via canonical Wnt signaling. J Biol Chem, 2008, 283(29): 20505-20522.
- 38. Fromigué O, Haÿ E, Barbara A, et al. Calcium sensing receptor-dependent and receptor-independent activation of osteoblast replication and survival by strontium ranelate. J Cell Mol Med, 2009, 13(8B): 2189-2199.
- 39. Dong SW, Ying DJ, Duan XJ, et al. Bone regeneration using an acellular extracellular matrix and bone marrow mesenchymal stem cells expressing Cbfα1. Biosci Biotechnol Biochem, 2009, 73(10): 2226-2233.
- 40. Hamdy NA. Strontium ranelate improves bone microarchitecture in osteoporosis. Rheumatology (Oxford), 2009, 48 Suppl 4: iv9-13.
- 41. Cesareo R, Napolitano C, Iozzino M. Strontium ranelate in postmenopausal osteoporosis treatment: a critical appraisal. Int J Womens Health, 2010, 2: 1-6.
- 42. Kay MI, Young RA, Posner AS. Crystal structure of hydroxyapatite. Nature, 1964, 204: 1050-1052.
- 43. 陳德敏, 傅飛遠. 不同含鍶量的摻鍶羥基磷灰石固溶體機械性能評價. 口腔材料器械雜志, 2001, 10(4): 178-179.
- 44. 倪國新, 呂維加, 曲廣運, 等. 鍶羥基磷灰石生物活性骨水泥應(yīng)用于髖關(guān)節(jié)置換的研究. 中華創(chuàng)傷骨科組織, 2007, 9(8): 708-710.
- 45. 閆鈞, 張玉梅, 憨勇, 等. 鍶磷灰石涂層鈦種植體骨結(jié)合的動物實驗. 中華口腔醫(yī)學(xué)雜志, 2010, 45(2): 89-93.
- 46. 廖大鵬, 周正炎, 顧云峰, 等. 鍶磷灰石生物特性的初步研究. 華西口腔醫(yī)學(xué)雜志, 2002, 20(3): 172-174.
- 47. 李峰, 趙信義. 含鍶磷酸鈣骨水泥體內(nèi)降解性能. 生物醫(yī)學(xué)工程與臨床, 2006, 10(4): 210-213.
- 48. 陳德敏, 劉雪陽. 鍶磷灰石多孔陶瓷不同孔隙率對成骨細(xì)胞生物學(xué)行為的影響. 組織工程與重建外科雜志, 2006, 2(3): 123-127.
- 49. 余喜訊, 陳元維, 史國齊, 等. 摻鍶聚磷酸鈣骨組織工程支架材料與成骨細(xì)胞及內(nèi)皮細(xì)胞的相容性研究. 中國組織工程研究與臨床康復(fù), 2007, 11(5): 857-860.
- 50. 傅飛遠, 陳德敏, 張建中. MTT比色法評價摻鍶羥基磷灰石固溶體細(xì)胞毒性. 生物醫(yī)學(xué)工程雜志, 2001, 18(3): 389-390, 415.
- 51. 郝瑞然, 王德平. 改性硼硅酸鹽生物玻璃的可控降解性能. 中國組織工程研究與臨床康復(fù), 2008, 12(10): 1962-1965.
- 52. Pan HB, Zhao XL, Zhang X, et al. Strontium borate glass: potential biomaterial for bone regeneration. J R Soc Interface, 2010, 7(48): 1025-1031.
- 53. Pina S, Vieira SI, Rego P, et al. Biological responses of brushite-forming Zn- and ZnSr-substituted beta-tricalcium phosphate bone cements. Eur Cell Mater, 2010 , 20: 162-177.
- 54. 余喜訊, 顧志鵬, 任大偉, 等. 新型骨科材料SCPP對成骨細(xì)胞促血管化生長因子表達影響的研究. 四川大學(xué)學(xué)報: 工程科學(xué)版, 2011, 43(1): 219-225.
- 55. 王楠, 郝永強, 何國, 等. 纖維多孔鈦微球復(fù)合納米鍶磷灰石修復(fù)骨缺損的實驗研究. 中華骨科雜志, 2009, 29(7): 672-676.
- 56. 朱廣文, 張延軍, 李鍵, 等. 核素Sr-89治療前列腺癌骨轉(zhuǎn)移臨床價值及血清tPSA變化的研究. 放射免疫學(xué)雜志, 2009, 22(1): 6-7.
- 57. 胥杰, 陳曉. 89Sr治療30例肺癌多發(fā)骨轉(zhuǎn)移的療效觀察. 中國呼吸與危重監(jiān)護雜志, 2008, 7(2): 104-106.
- 58. Logothetis CJ, Navone NM, Lin SH. Understanding the biology of bone metastases: key to the effective treatment of prostate cancer. Clin Cancer Res, 2008, 14(6): 1599-1602.