目的綜述用于修復(fù)骨缺損的可塑形骨泥的研究進展及臨床應(yīng)用情況。 方法查閱近年可塑形骨泥的相關(guān)文獻,并進行綜合分析。 結(jié)果可塑形骨泥的制備和應(yīng)用技術(shù)已日趨成熟,已有多種可塑形骨泥廣泛應(yīng)用于臨床,并獲得了良好療效。目前制備可塑形骨泥的材料各不相同,方法各異,骨修復(fù)能力也有較大差異。 結(jié)論可塑形骨泥為修復(fù)形狀不規(guī)則的骨缺損提供了有效的治療手段,但現(xiàn)有的可塑形骨泥在滿足臨床需求方面還有一定不足,有待進一步研究。
引用本文: 張乃麗,李寶興,張育敏,周沫. 可塑形骨泥的研究進展. 中國修復(fù)重建外科雜志, 2012, 26(11): 1381-1397. doi: 復(fù)制
版權(quán)信息: ?四川大學(xué)華西醫(yī)院華西期刊社《中國修復(fù)重建外科雜志》版權(quán)所有,未經(jīng)授權(quán)不得轉(zhuǎn)載、改編
1. | Durham SR, McComb JG, Levy ML. Correction of large (>25 cm(2)) cranial defects with “reinforced” hydroxyapatite cement: technique and complications. Neurosurgery, 2003, 52(4): 842-845. |
2. | Baroth S, Bourges X, Goyenvalle E, et al. Injectable biphasic calcium phosphate bioceramic: The HYDROS concept. Biomed Mater Eng, 2009, 19(1): 71-76. |
3. | Babbush CA. Histologic evaluation of human biopsies after dental augmentation with a demineralized bone matrix putty. Implant Dent, 2003, 12(4): 325-332. |
4. | Yee AJ, Bae HW, Friess D, et al. Augmentation of rabbit posterolateral spondylodesis using a novel demineralized bone matrix-hyaluronan putty. Spine (Phila Pa 1976), 2003, 28(21): 2435-2440. |
5. | Pietrzak WS, Perns SV, Keyes J, et al. Demineralized bone matrix graft: a scientific and clinical case study assessment. J Foot Ankle Surg, 2005, 44(5): 345-353. |
6. | Wildemann B, Kadow-Romacker A, Haas NP, et al. Quantification of various growth factors in different demineralized bone matrix preparations. J Biomed Mater Res A, 2007, 81(2): 437-442. |
7. | Bae H, Zhao L, Zhu D, et al. Variability across ten production lots of a single demineralized bone matrix product. J Bone Joint Surg (Am), 2010, 92(2): 427-435. |
8. | Wang Z, Lu B, Chen L, et al. Evaluation of an osteostimulative putty in the sheep spine. J Mater Sci Mater Med, 2011, 22(1): 185-191. |
9. | Kobayashi H, Turner AS, Seim HB 3rd, et al. Evaluation of a silica-containing bone graft substitute in a vertebral defect model. J Biomed Mater Res A, 2010, 92(2): 596-603. |
10. | Chan C, Thompson I, Robinson P, et al. Evaluation of Bioglass/dextran composite as a bone graft substitute. Int J Oral Maxillofac Surg, 2002, 31(1): 73-77. |
11. | Butz F, Bächle M, Ofer M, et al. Sinus augmentation with bovine hydroxyapatite/synthetic peptide in a sodium hyaluronate carrier (PepGen P-15 Putty): a clinical investigation of different healing times. Int J Oral Maxillofac Implants, 2011, 26(6): 1317-1323. |
12. | Artzi Z, Weinreb M, Tal H, et al. Experimental intrabony and periodontal defects treated with natural mineral combined with a synthetic cell-binding Peptide in the canine: morphometric evaluations. J Periodontol, 2006, 77(10): 1658-1664. |
13. | Lee JH, Lee KM, Baek HR, et al. Combined effects of porous hydroxyapatite and demineralized bone matrix on bone induction: in vitro and in vivo study using a nude rat model. Biomed Mater, 2011, 6(1): 015008. |
14. | Kato M, Namikawa T, Terai H, et al. Ectopic bone formation in mice associated with a lactic acid/dioxanone/ethylene glycol copolymer-tricalcium phosphate composite with added recombinant human bone morphogenetic protein-2. Biomaterials, 2006, 27(21): 3927-3933. |
15. | Cook SD, Salkeld SL, Patron LP. Bone defect healing with an osteogenic protein-1 device combined with carboxymethylcellulose. J Biomed Mater Res B Appl Biomater, 2005, 75(1): 137-145. |
16. | Turner TM, Urban RM, Hall DJ, et al. Restoration of large bone defects using a hard-setting, injectable putty containing demineralized bone particles compared to cancellous autograft bone. Orthopedics, 2003, 26(5 Suppl): s561-565. |
17. | Sbordone L, Bortolaia C, Perrotti V, et al. Clinical and histologic analysis of calcium sulfate in treatment of a post-extraction defect: a case report. Implant Dent, 2005, 14(1): 82-87. |
18. | Bucholz RW. Nonallograft osteoconductive bone graft substitutes. Clin Orthop Relat Res, 2002, (395): 44-52. |
19. | Callan DP, Salkeld SL, Scarborough N. Histologic analysis of implant sites after grafting with demineralized bone matrix putty and sheets. Implant Dent, 2000, 9(1): 36-44. |
20. | Wang JC, Kanim LE, Nagakawa IS, et al. Dose-dependent toxicity of a commercially available demineralized bone matrix material. Spine (Phila Pa 1976), 2001, 26(13): 1429-1436. |
21. | Gertzman AA, Hae Sunwoo M. A pilot study evaluating sodium hyaluronate as a carrier for freeze-dried demineralized bone powder. Cell Tissue Bank, 2001, 2(2): 87-94. |
22. | Vastardis S, Yukna RA, Mayer ET, et al. Periodontal regeneration with peptide-enhanced anorganic bone matrix in particulate and putty form in dogs. J Periodontol, 2005, 76(10): 1690-1696. |
23. | Tian M, Yang Z, Kuwahara K, et al. Delivery of demineralized bone matrix powder using a thermogelling chitosan carrier. Acta Biomater, 2012, 8(2): 753-762. |
24. | Ishikawa K, Miyamoto Y, Takechi M, et al. Non-decay type fast-setting calcium phosphate cement: hydroxyapatite putty containing an increased amount of sodium alginate. J Biomed Mater Res, 1997, 36(3): 393-399. |
25. | Bennett S, Connolly K, Lee DR, et al. Initial biocompatibility studies of a novel degradable polymeric bone substitute that hardens in situ. Bone, 1996, 19(1 Suppl): 101S-107S. |
26. | Domb AJ, Manor N, Elmalak O. Biodegradable bone cement compositions based on acrylate and epoxide terminated poly (propylene fumarate) oligomers and calcium salt compositions. Biomaterials, 1996, 17(4): 411-417. |
27. | Smucker JD, Petersen EB, Fredericks DC. Assessment of mastergraft ? putty as a graft extender in a rabbit posterolateral fusion model. Spine (Phila Pa 1976), 2011. [Epub ahead of print]. |
28. | Han B, Tang B, Nimni ME. Combined effects of phosphatidylcholine and demineralized bone matrix on bone induction. Connect Tissue Res, 2003, 44(3-4): 160-166. |
29. | Barbieri D, Yuan HP, Groot FD, et al. Influence of different polymeric gels on the ectopic bone forming ability of an osteoinductive biphasic calcium phosphate ceramic. Acta Biomaterialia, 2011, 7(5): 2007-2014. |
30. | Clokie CM, Moghadam H, Jackson MT, et al. Closure of critical sized defects with allogenic and alloplastic bone substitutes. J Craniofac Surg, 2002, 13(1): 111-123. |
31. | Peterson B, Whang PG, Iglesias R, et al. Osteoinductivity of commercially available demineralized bone matrix. Preparations in a spine fusion model. J Bone Joint Surg (Am), 2004, 86-A(10): 2243-2250. |
32. | Chesmel KD, Branger J, Wertheim H, et al. Healing response to various forms of human demineralized bone matrix in athymic rat cranial defects. J Oral Maxillofac Surg, 1998, 56(7): 857-855. |
33. | Lee YP, Jo M, Luna M, et al. The efficacy of different commercially available demineralized bone matrix substances in an athymic rat model. J Spinal Disord Tech, 2005, 18(5): 439-444. |
34. | Jensen SS, Terheyden H. Bone augmentation procedures in localized defects in the alveolar ridge: clinical results with different bone grafts and bone-substitute materials. Int J Oral Maxillofac Implants, 2009, 24 Suppl: 218-236. |
35. | Güven A, Ungör C, Cizmeci ?enel F, et al. Radiologic evaluation of putty versus powder form of demineralized bone matrix in sinus floor elevation. J Oral Implantol, 2012, 38(4): 337-343. |
36. | Bender SA, Rogalski JB, Mills MP, et al. Evaluation of demineralized bone matrix paste and putty in periodontal intraosseous defects. J Periodontol, 2005, 76(5): 768-777. |
37. | Kaya Y, Yalim M, Bahçecitapar M, et al. Comparison of applying particulate demineralized bone matrix (DBM), putty DBM and open flap debridement in periodontal horizontal bone defects. A 12-month longitudinal, multi-center, triple-blind, split-mouth, randomized, controlled clinical study. Part 1—clinical and radiographic evaluation. J Oral Rehabil, 2009, 36(7): 524-534. |
38. | Bhongade ML, Tiwari IR. A comparative evaluation of the effectiveness of an anorganic bone matrix/cell binding peptide with an open flap debridement in human infrabony defects: a clinical and radiographic study. J Contemp Dent Pract, 2007, 8(6): 25-34. |
39. | Samartzis D, Marco RA. Osteochondroma of the sacrum: a case report and review of the literature. Spine (Phila Pa 1976), 2006, 31(13): E425-429. |
40. | Wilkins RM, Kelly CM. The effect of allomatrix injectable putty on the outcome of long bone applications. Orthopedics, 2003, 26(5 Suppl): s567-570. |
41. | Modi CS, Wicks L, Srinivasan K. Reconstruction of humeral head defect for locked posterior shoulder dislocation. Orthopedics, 2009, 32(9): 691. |
42. | Thordarson DB, Kuehn S. Use of demineralized bone matrix in ankle/hindfoot fusion. Foot Ankle Int, 2003, 24(7): 557-560. |
43. | Kanayama M, Hashimoto T, Shigenobu K, et al. A prospective randomized study of posterolateral lumbar fusion using osteogenic protein-1 (OP-1) versus local autograft with ceramic bone substitute: emphasis of surgical exploration and histologic assessment. Spine (Phila Pa 1976), 2006, 31(10): 1067-1074. |
44. | Lee B, Woo P. Use of injectable hydroxyapatite in the secondary setting to restore glottic competence after partial laryngectomy with arytenoidectomy. Ann Otol Rhinol Laryngol, 2004, 113(8): 618-622. |
45. | Leatherman BD, Dornhoffer JL, Fan CY, et al. Demineralized bone matrix as an alternative for mastoid obliteration and posterior canal wall reconstruction: results in an animal model. Otol Neurotol, 2001, 22(6): 731-736. |
46. | Maruyama J, Gyo K, Hinohira Y, et al. Staged intact canal wall tympanoplasty for treatment of middle ear cholesteatoma. Nihon Jibiinkoka Gakkai Kaiho, 1998, 101(2): 236-242. |
47. | Lewis KN, Thomas MV, Puleo DA. Mechanical and degradation behavior of polymer-calcium sulfate composites. J Mater Sci Mater Med, 2006, 17(6): 531-537. |
48. | Reynolds MA, Aichelmann-Reidy ME, Kassolis JD, et al. Calcium sulfate-carboxymethylcellulose bone graft binder: Histologic and morphometric evaluation in a critical size defect. J Biomed Mater Res B Appl Biomater, 2007, 83(2): 451-458. |
49. | Blumenthal NM, Koh-Kunst G, Alves ME, et al. Effect of surgical implantation of recombinant human bone morphogenetic protein-2 in a bioabsorbable collagen sponge or calcium phosphate putty carrier in intrabony periodontal defects in the baboon. J Periodontol, 2002, 73(12): 1494-1506. |
50. | Lu J, Bhargav D, Wei AQ, et al. Posterolateral intertransverse spinal fusion possible in osteoporotic rats with BMP-7 in a higher dose delivered on a composite carrier. Spine (Phila Pa 1976), 2008, 33(3): 242-249. |
51. | Bomback DA, Grauer JN, Lugo R, et al. Comparison of posterolateral lumbar fusion rates of Grafton Putty and OP-1 Putty in an athymic rat model. Spine (Phila Pa 1976), 2004, 29(15): 1612-1617. |
52. | Li W, Lee M, Whang J, et al. Delivery of lyophilized Nell-1 in a rat spinal fusion model. Tissue Eng Part A, 2010, 16(9): 2861-2870. |
53. | Smiler D, Soltan M, Lee JW. A histomorphogenic analysis of bone grafts augmented with adult stem cells. Implant Dent, 2007, 16(1): 42-53. |
54. | Vaccaro AR, Stubbs HA, Block JE. Demineralized bone matrix composite grafting for posterolateral spinal fusion. Orthopedics, 2007, 30(7): 567-570. |
55. | Lindsey RW, Wood GW, Sadasivian KK, et al. Grafting long bone fractures with demineralized bone matrix putty enriched with bone marrow: pilot findings. Orthopedics, 2006, 29(10): 939-941. |
56. | Moore ST, Katz JM, Zhukauskas RM, et al. Osteoconductivity and osteoinductivity of Puros(R) DBM putty. J Biomater Appl, 2011, 26(2): 151-171. |
57. | Mhawi AA, Peel SA, Fok TC, et al. Bone regeneration in athymic calvarial defects with Accell DBM100. J Craniofac Surg, 2007, 18(3): 497-503. |
- 1. Durham SR, McComb JG, Levy ML. Correction of large (>25 cm(2)) cranial defects with “reinforced” hydroxyapatite cement: technique and complications. Neurosurgery, 2003, 52(4): 842-845.
- 2. Baroth S, Bourges X, Goyenvalle E, et al. Injectable biphasic calcium phosphate bioceramic: The HYDROS concept. Biomed Mater Eng, 2009, 19(1): 71-76.
- 3. Babbush CA. Histologic evaluation of human biopsies after dental augmentation with a demineralized bone matrix putty. Implant Dent, 2003, 12(4): 325-332.
- 4. Yee AJ, Bae HW, Friess D, et al. Augmentation of rabbit posterolateral spondylodesis using a novel demineralized bone matrix-hyaluronan putty. Spine (Phila Pa 1976), 2003, 28(21): 2435-2440.
- 5. Pietrzak WS, Perns SV, Keyes J, et al. Demineralized bone matrix graft: a scientific and clinical case study assessment. J Foot Ankle Surg, 2005, 44(5): 345-353.
- 6. Wildemann B, Kadow-Romacker A, Haas NP, et al. Quantification of various growth factors in different demineralized bone matrix preparations. J Biomed Mater Res A, 2007, 81(2): 437-442.
- 7. Bae H, Zhao L, Zhu D, et al. Variability across ten production lots of a single demineralized bone matrix product. J Bone Joint Surg (Am), 2010, 92(2): 427-435.
- 8. Wang Z, Lu B, Chen L, et al. Evaluation of an osteostimulative putty in the sheep spine. J Mater Sci Mater Med, 2011, 22(1): 185-191.
- 9. Kobayashi H, Turner AS, Seim HB 3rd, et al. Evaluation of a silica-containing bone graft substitute in a vertebral defect model. J Biomed Mater Res A, 2010, 92(2): 596-603.
- 10. Chan C, Thompson I, Robinson P, et al. Evaluation of Bioglass/dextran composite as a bone graft substitute. Int J Oral Maxillofac Surg, 2002, 31(1): 73-77.
- 11. Butz F, Bächle M, Ofer M, et al. Sinus augmentation with bovine hydroxyapatite/synthetic peptide in a sodium hyaluronate carrier (PepGen P-15 Putty): a clinical investigation of different healing times. Int J Oral Maxillofac Implants, 2011, 26(6): 1317-1323.
- 12. Artzi Z, Weinreb M, Tal H, et al. Experimental intrabony and periodontal defects treated with natural mineral combined with a synthetic cell-binding Peptide in the canine: morphometric evaluations. J Periodontol, 2006, 77(10): 1658-1664.
- 13. Lee JH, Lee KM, Baek HR, et al. Combined effects of porous hydroxyapatite and demineralized bone matrix on bone induction: in vitro and in vivo study using a nude rat model. Biomed Mater, 2011, 6(1): 015008.
- 14. Kato M, Namikawa T, Terai H, et al. Ectopic bone formation in mice associated with a lactic acid/dioxanone/ethylene glycol copolymer-tricalcium phosphate composite with added recombinant human bone morphogenetic protein-2. Biomaterials, 2006, 27(21): 3927-3933.
- 15. Cook SD, Salkeld SL, Patron LP. Bone defect healing with an osteogenic protein-1 device combined with carboxymethylcellulose. J Biomed Mater Res B Appl Biomater, 2005, 75(1): 137-145.
- 16. Turner TM, Urban RM, Hall DJ, et al. Restoration of large bone defects using a hard-setting, injectable putty containing demineralized bone particles compared to cancellous autograft bone. Orthopedics, 2003, 26(5 Suppl): s561-565.
- 17. Sbordone L, Bortolaia C, Perrotti V, et al. Clinical and histologic analysis of calcium sulfate in treatment of a post-extraction defect: a case report. Implant Dent, 2005, 14(1): 82-87.
- 18. Bucholz RW. Nonallograft osteoconductive bone graft substitutes. Clin Orthop Relat Res, 2002, (395): 44-52.
- 19. Callan DP, Salkeld SL, Scarborough N. Histologic analysis of implant sites after grafting with demineralized bone matrix putty and sheets. Implant Dent, 2000, 9(1): 36-44.
- 20. Wang JC, Kanim LE, Nagakawa IS, et al. Dose-dependent toxicity of a commercially available demineralized bone matrix material. Spine (Phila Pa 1976), 2001, 26(13): 1429-1436.
- 21. Gertzman AA, Hae Sunwoo M. A pilot study evaluating sodium hyaluronate as a carrier for freeze-dried demineralized bone powder. Cell Tissue Bank, 2001, 2(2): 87-94.
- 22. Vastardis S, Yukna RA, Mayer ET, et al. Periodontal regeneration with peptide-enhanced anorganic bone matrix in particulate and putty form in dogs. J Periodontol, 2005, 76(10): 1690-1696.
- 23. Tian M, Yang Z, Kuwahara K, et al. Delivery of demineralized bone matrix powder using a thermogelling chitosan carrier. Acta Biomater, 2012, 8(2): 753-762.
- 24. Ishikawa K, Miyamoto Y, Takechi M, et al. Non-decay type fast-setting calcium phosphate cement: hydroxyapatite putty containing an increased amount of sodium alginate. J Biomed Mater Res, 1997, 36(3): 393-399.
- 25. Bennett S, Connolly K, Lee DR, et al. Initial biocompatibility studies of a novel degradable polymeric bone substitute that hardens in situ. Bone, 1996, 19(1 Suppl): 101S-107S.
- 26. Domb AJ, Manor N, Elmalak O. Biodegradable bone cement compositions based on acrylate and epoxide terminated poly (propylene fumarate) oligomers and calcium salt compositions. Biomaterials, 1996, 17(4): 411-417.
- 27. Smucker JD, Petersen EB, Fredericks DC. Assessment of mastergraft ? putty as a graft extender in a rabbit posterolateral fusion model. Spine (Phila Pa 1976), 2011. [Epub ahead of print].
- 28. Han B, Tang B, Nimni ME. Combined effects of phosphatidylcholine and demineralized bone matrix on bone induction. Connect Tissue Res, 2003, 44(3-4): 160-166.
- 29. Barbieri D, Yuan HP, Groot FD, et al. Influence of different polymeric gels on the ectopic bone forming ability of an osteoinductive biphasic calcium phosphate ceramic. Acta Biomaterialia, 2011, 7(5): 2007-2014.
- 30. Clokie CM, Moghadam H, Jackson MT, et al. Closure of critical sized defects with allogenic and alloplastic bone substitutes. J Craniofac Surg, 2002, 13(1): 111-123.
- 31. Peterson B, Whang PG, Iglesias R, et al. Osteoinductivity of commercially available demineralized bone matrix. Preparations in a spine fusion model. J Bone Joint Surg (Am), 2004, 86-A(10): 2243-2250.
- 32. Chesmel KD, Branger J, Wertheim H, et al. Healing response to various forms of human demineralized bone matrix in athymic rat cranial defects. J Oral Maxillofac Surg, 1998, 56(7): 857-855.
- 33. Lee YP, Jo M, Luna M, et al. The efficacy of different commercially available demineralized bone matrix substances in an athymic rat model. J Spinal Disord Tech, 2005, 18(5): 439-444.
- 34. Jensen SS, Terheyden H. Bone augmentation procedures in localized defects in the alveolar ridge: clinical results with different bone grafts and bone-substitute materials. Int J Oral Maxillofac Implants, 2009, 24 Suppl: 218-236.
- 35. Güven A, Ungör C, Cizmeci ?enel F, et al. Radiologic evaluation of putty versus powder form of demineralized bone matrix in sinus floor elevation. J Oral Implantol, 2012, 38(4): 337-343.
- 36. Bender SA, Rogalski JB, Mills MP, et al. Evaluation of demineralized bone matrix paste and putty in periodontal intraosseous defects. J Periodontol, 2005, 76(5): 768-777.
- 37. Kaya Y, Yalim M, Bahçecitapar M, et al. Comparison of applying particulate demineralized bone matrix (DBM), putty DBM and open flap debridement in periodontal horizontal bone defects. A 12-month longitudinal, multi-center, triple-blind, split-mouth, randomized, controlled clinical study. Part 1—clinical and radiographic evaluation. J Oral Rehabil, 2009, 36(7): 524-534.
- 38. Bhongade ML, Tiwari IR. A comparative evaluation of the effectiveness of an anorganic bone matrix/cell binding peptide with an open flap debridement in human infrabony defects: a clinical and radiographic study. J Contemp Dent Pract, 2007, 8(6): 25-34.
- 39. Samartzis D, Marco RA. Osteochondroma of the sacrum: a case report and review of the literature. Spine (Phila Pa 1976), 2006, 31(13): E425-429.
- 40. Wilkins RM, Kelly CM. The effect of allomatrix injectable putty on the outcome of long bone applications. Orthopedics, 2003, 26(5 Suppl): s567-570.
- 41. Modi CS, Wicks L, Srinivasan K. Reconstruction of humeral head defect for locked posterior shoulder dislocation. Orthopedics, 2009, 32(9): 691.
- 42. Thordarson DB, Kuehn S. Use of demineralized bone matrix in ankle/hindfoot fusion. Foot Ankle Int, 2003, 24(7): 557-560.
- 43. Kanayama M, Hashimoto T, Shigenobu K, et al. A prospective randomized study of posterolateral lumbar fusion using osteogenic protein-1 (OP-1) versus local autograft with ceramic bone substitute: emphasis of surgical exploration and histologic assessment. Spine (Phila Pa 1976), 2006, 31(10): 1067-1074.
- 44. Lee B, Woo P. Use of injectable hydroxyapatite in the secondary setting to restore glottic competence after partial laryngectomy with arytenoidectomy. Ann Otol Rhinol Laryngol, 2004, 113(8): 618-622.
- 45. Leatherman BD, Dornhoffer JL, Fan CY, et al. Demineralized bone matrix as an alternative for mastoid obliteration and posterior canal wall reconstruction: results in an animal model. Otol Neurotol, 2001, 22(6): 731-736.
- 46. Maruyama J, Gyo K, Hinohira Y, et al. Staged intact canal wall tympanoplasty for treatment of middle ear cholesteatoma. Nihon Jibiinkoka Gakkai Kaiho, 1998, 101(2): 236-242.
- 47. Lewis KN, Thomas MV, Puleo DA. Mechanical and degradation behavior of polymer-calcium sulfate composites. J Mater Sci Mater Med, 2006, 17(6): 531-537.
- 48. Reynolds MA, Aichelmann-Reidy ME, Kassolis JD, et al. Calcium sulfate-carboxymethylcellulose bone graft binder: Histologic and morphometric evaluation in a critical size defect. J Biomed Mater Res B Appl Biomater, 2007, 83(2): 451-458.
- 49. Blumenthal NM, Koh-Kunst G, Alves ME, et al. Effect of surgical implantation of recombinant human bone morphogenetic protein-2 in a bioabsorbable collagen sponge or calcium phosphate putty carrier in intrabony periodontal defects in the baboon. J Periodontol, 2002, 73(12): 1494-1506.
- 50. Lu J, Bhargav D, Wei AQ, et al. Posterolateral intertransverse spinal fusion possible in osteoporotic rats with BMP-7 in a higher dose delivered on a composite carrier. Spine (Phila Pa 1976), 2008, 33(3): 242-249.
- 51. Bomback DA, Grauer JN, Lugo R, et al. Comparison of posterolateral lumbar fusion rates of Grafton Putty and OP-1 Putty in an athymic rat model. Spine (Phila Pa 1976), 2004, 29(15): 1612-1617.
- 52. Li W, Lee M, Whang J, et al. Delivery of lyophilized Nell-1 in a rat spinal fusion model. Tissue Eng Part A, 2010, 16(9): 2861-2870.
- 53. Smiler D, Soltan M, Lee JW. A histomorphogenic analysis of bone grafts augmented with adult stem cells. Implant Dent, 2007, 16(1): 42-53.
- 54. Vaccaro AR, Stubbs HA, Block JE. Demineralized bone matrix composite grafting for posterolateral spinal fusion. Orthopedics, 2007, 30(7): 567-570.
- 55. Lindsey RW, Wood GW, Sadasivian KK, et al. Grafting long bone fractures with demineralized bone matrix putty enriched with bone marrow: pilot findings. Orthopedics, 2006, 29(10): 939-941.
- 56. Moore ST, Katz JM, Zhukauskas RM, et al. Osteoconductivity and osteoinductivity of Puros(R) DBM putty. J Biomater Appl, 2011, 26(2): 151-171.
- 57. Mhawi AA, Peel SA, Fok TC, et al. Bone regeneration in athymic calvarial defects with Accell DBM100. J Craniofac Surg, 2007, 18(3): 497-503.