• 四川大學華西醫(yī)院麻醉科(成都,610041);

目的  觀察電壓依賴性鈣通道是否作用于大鼠脊髓背角膠狀質層(SG)神經元大振幅微小興奮性突觸后電流的形成。 方法  選用成年雄性Sprague-Dawley(SD)大鼠,2%~3%異氟烷麻醉后,分離其腰骶部的脊髓,然后切片。采用全細胞電壓鉗技術,玻璃微電極的電阻為4~6 MΩ,鉗制電壓為?70 mV,記錄膠狀質層神經元微小興奮性突觸后電流(mEPSC)電流。將電流信號用Axopatch 200來放大并儲存于電腦。對照組和用藥結束后,持續(xù)采樣mEPSC電流30 s。mEPSC電流的頻率和振幅用Clampfit 8.1進行分析。 結果  鉗制電壓為?70 mV時,所有SG神經元均有自發(fā)性的EPSC。辣椒素增加mEPSC發(fā)生的頻率和波幅。鈷離子抑制辣椒素誘導的大振幅mEPSC。鈷離子抑制辣椒素誘導的mEPSC的平均振幅,而不抑制其發(fā)生頻率。 結論  電壓依賴性鈣離子通道參與了辣椒素引起的痛覺形成。

引用本文: 黃福森,楊小娟,王儒蓉,吳超然. 電壓依賴性鈣通道參與大振幅微小興奮性突觸后電流形成的實驗研究. 華西醫(yī)學, 2012, 27(6): 905-909. doi: 復制

版權信息: ?四川大學華西醫(yī)院華西期刊社《華西醫(yī)學》版權所有,未經授權不得轉載、改編

1.  Caterina MJ, Schumacher MA, Tominaga M, et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway[J]. Nature, 1997, 389(6653): 816-824.
2.  Sugiura Y, Lee CL, Perl ER. Central projections of identified, unmyelinated (C) afferent fibers innervating mammalian skin[J]. Science, 1986, 234(4774):358-361.
3.  Savidge JR, Ranasinghe SP, Rang HP. Comparison of intracellular calcium signals evoked by heat and capsaicin in cultured rat dorsalroot ganglion neurons and in a cell line expressing the rat vanilloid receptor, VR1[J]. Neuroscience, 2001, 102(1): 177-184.
4.  St Pierre M, Reeh PW, Zimmermann K. Differential effects of TRPV channel block on polymodal activation of rat cutaneous nociceptors in vitro[J]. Exp Brain Res, 2009, 196(1): 31-44.
5.  Chard PS, Bleakman D, Savidge JR, et al. Capsaicin-induced neurotoxicity in cultured dorsal root ganglion neurons: involvement of calcium-activated proteases[J]. Neuroscience, 1995, 65(4): 1099-1108.
6.  Cholewinski A, Burgess GM, Bevan S: The role of calcium in capsaicin-induced desensitization in rat cultured dorsal root ganglion neurons[J]. Neuroscience, 1993, 55(4): 1015-1023.
7.  Baba H, Kohno T, Okamoto M, et al. Muscarinic facilitation of GABA release in substantia gelatinosa of the rat spinal dorsal horn[J]. J Physiol , 1998, 508 (Pt 1): 83-93.
8.  Yoshimura M, Nishi S: Blind patch-clamp recordings from substantia gelatinosa neurons in adult rat spinal cord slices: pharmacological properties of synaptic currents[J]. Neuroscience, 1993, 53(2): 519-526.
9.  Holzer P. Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons[J]. Pharmacol Rev , 1991, 43(2): 143-201.
10.  Zeilhofer HU, Kress M, Swandulla D. Fractional Ca2+ currents through capsaicin- and proton-activated ion channels in rat dorsal root ganglion neurones[J]. J Physiol , 1997, 503(1): 67-78.
11.  Larkman A, Stratford K, Jack J. Quantal analysis of excitatory synaptic action and depression in hippocampal slices[J]. Nature , 1991, 350(6316): 344-347.
12.  Yang K, Kumamoto E, Furue H, et al. Capsaicin facilitates excitatory but not inhibitory synaptic transmission in substantia gelatinosa of the rat spinal cord[J]. Neurosci Lett, 1998, 255(3): 135-138.
13.  Ahluwalia J, Rang H, Nagy I. The putative role of vanilloid receptor-like protein-1 in mediating high threshold noxious heat-sensitivity in rat cultured primary sensory neurons[J]. Eur J Neurosci, 2002 , 16(8): 1483-1489.
14.  Larkman AU, Jack JJ, Stratford KJ. Quantal analysis of excitatory synapses in rat hippocampal CA1 in vitro during low-frequencydepression[J]. J Physiol, 1997, 505 (Pt 2): 457-471.
15.  Feldmeyer D, Radnikow G. Developmental alterations in the functional properties of excitatory neocortical synapses[J]. J Physiol, 2009, 587(Pt 9): 1889-1896.
16.  Jiang CY, Fujita T, Yue HY, et al. Effect of resiniferatoxin on glutamatergic spontaneous excitatory synaptic transmission in substantia gelatinosa neurons of the adult rat spinal cord[J]. Neuroscience, 2009 , 164(4): 1833-1844.
  1. 1.  Caterina MJ, Schumacher MA, Tominaga M, et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway[J]. Nature, 1997, 389(6653): 816-824.
  2. 2.  Sugiura Y, Lee CL, Perl ER. Central projections of identified, unmyelinated (C) afferent fibers innervating mammalian skin[J]. Science, 1986, 234(4774):358-361.
  3. 3.  Savidge JR, Ranasinghe SP, Rang HP. Comparison of intracellular calcium signals evoked by heat and capsaicin in cultured rat dorsalroot ganglion neurons and in a cell line expressing the rat vanilloid receptor, VR1[J]. Neuroscience, 2001, 102(1): 177-184.
  4. 4.  St Pierre M, Reeh PW, Zimmermann K. Differential effects of TRPV channel block on polymodal activation of rat cutaneous nociceptors in vitro[J]. Exp Brain Res, 2009, 196(1): 31-44.
  5. 5.  Chard PS, Bleakman D, Savidge JR, et al. Capsaicin-induced neurotoxicity in cultured dorsal root ganglion neurons: involvement of calcium-activated proteases[J]. Neuroscience, 1995, 65(4): 1099-1108.
  6. 6.  Cholewinski A, Burgess GM, Bevan S: The role of calcium in capsaicin-induced desensitization in rat cultured dorsal root ganglion neurons[J]. Neuroscience, 1993, 55(4): 1015-1023.
  7. 7.  Baba H, Kohno T, Okamoto M, et al. Muscarinic facilitation of GABA release in substantia gelatinosa of the rat spinal dorsal horn[J]. J Physiol , 1998, 508 (Pt 1): 83-93.
  8. 8.  Yoshimura M, Nishi S: Blind patch-clamp recordings from substantia gelatinosa neurons in adult rat spinal cord slices: pharmacological properties of synaptic currents[J]. Neuroscience, 1993, 53(2): 519-526.
  9. 9.  Holzer P. Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons[J]. Pharmacol Rev , 1991, 43(2): 143-201.
  10. 10.  Zeilhofer HU, Kress M, Swandulla D. Fractional Ca2+ currents through capsaicin- and proton-activated ion channels in rat dorsal root ganglion neurones[J]. J Physiol , 1997, 503(1): 67-78.
  11. 11.  Larkman A, Stratford K, Jack J. Quantal analysis of excitatory synaptic action and depression in hippocampal slices[J]. Nature , 1991, 350(6316): 344-347.
  12. 12.  Yang K, Kumamoto E, Furue H, et al. Capsaicin facilitates excitatory but not inhibitory synaptic transmission in substantia gelatinosa of the rat spinal cord[J]. Neurosci Lett, 1998, 255(3): 135-138.
  13. 13.  Ahluwalia J, Rang H, Nagy I. The putative role of vanilloid receptor-like protein-1 in mediating high threshold noxious heat-sensitivity in rat cultured primary sensory neurons[J]. Eur J Neurosci, 2002 , 16(8): 1483-1489.
  14. 14.  Larkman AU, Jack JJ, Stratford KJ. Quantal analysis of excitatory synapses in rat hippocampal CA1 in vitro during low-frequencydepression[J]. J Physiol, 1997, 505 (Pt 2): 457-471.
  15. 15.  Feldmeyer D, Radnikow G. Developmental alterations in the functional properties of excitatory neocortical synapses[J]. J Physiol, 2009, 587(Pt 9): 1889-1896.
  16. 16.  Jiang CY, Fujita T, Yue HY, et al. Effect of resiniferatoxin on glutamatergic spontaneous excitatory synaptic transmission in substantia gelatinosa neurons of the adult rat spinal cord[J]. Neuroscience, 2009 , 164(4): 1833-1844.