• 上海交通大學醫(yī)學院附屬第三人民醫(yī)院普外一科(上海 201900);

目的  總結(jié)目前胃腸道干細胞及其在胃腫瘤中的作用的研究進展。
方法  通過查詢PubMed,檢索胃腸道干細胞微環(huán)境、標志物和胃腫瘤干細胞理論相關(guān)的文獻,對關(guān)于胃腸道干細胞以及腫瘤干細胞的研究文獻進行分析。
結(jié)果  腫瘤的干細胞起源理論10年來發(fā)展十分迅速,胃腸道干細胞與胃腫瘤關(guān)系密切,自身具有特定的標志物,生長的微環(huán)境包含多種組織因子。胃腸道干細胞受到炎癥刺激誘導(dǎo)出現(xiàn)異常增殖,轉(zhuǎn)變?yōu)槟[瘤干細胞,從而促進胃腫瘤的生長、侵襲和轉(zhuǎn)移。
結(jié)論  胃腫瘤干細胞可作為治療胃腫瘤的有效靶點之一,可為人類胃腫瘤的治療提供新的突破口。

引用本文: 王嘉,俞繼衛(wèi),姜波健. 胃腸道干細胞及其在胃腫瘤中的作用的研究進展△. 中國普外基礎(chǔ)與臨床雜志, 2013, 20(2): 221-226. doi: 復(fù)制

版權(quán)信息: ?四川大學華西醫(yī)院華西期刊社《中國普外基礎(chǔ)與臨床雜志》版權(quán)所有,未經(jīng)授權(quán)不得轉(zhuǎn)載、改編

1. van der Flier LG, van Gijn ME, Hatzis P, et al. Transcription factor achaete scute-like 2 controls intestinal stem cell fate[J]. Cell, 2009, 136(5):903-912.
2. McNairn AJ, Guasch G. Epithelial transition zones:mergingmicroenvironments, niches, and cellular transformation[J]. Eur J Dermatol, 2011, 21 Suppl 2:21-28.
3. Levin DE, Grikscheit TC. Tissue-engineering of the gastrointestinal tract[J]. Curr Opin Pediatr, 2012, 24(3):365-370.
4. Haegebarth A, Clevers H. Wnt signaling, Lgr5, and stem cells in the intestine and skin[J]. Am J Pathol, 2009, 174(3):715-721.
5. Neal MD, Richardson WM, Sodhi CP, et al. Intestinal stem cells and their roles during mucosal injury and repair[J]. J Surg Res, 2011, 167(1):1-8.
6. Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244):262-265.
7. Sato T, van Es JH, Snippert HJ, et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts[J]. Nature, 2011, 469(7330):415-418.
8. Kim TH, Escudero S, Shivdasani RA. Intact function of Lgr5 receptor-expressing intestinal stem cells in the absence of Paneth cells[J]. Proc Natl Acad Sci USA, 2012, 109(10):3932-3937.
9. Saikawa Y, Fukuda K, Takahashi T, et al. Gastric carcinogenesis and the cancer stem cell hypothesis[J]. Gastric Cancer, 2010, 13(1):11-24.
10. Karam SM. A focus on parietal cells as a renewing cell population[J]. World J Gastroenterol, 2010, 16(5):538-546.
11. Bredemeyer AJ, Geahlen JH, Weis VG, et al. The gastric epithelialprogenitor cell niche and differentiation of the zymogenic (chief) cell lineage[J]. Dev Biol, 2009, 325(1):211-224.
12. Nam KT, Lee HJ, Sousa JF, et al. Mature chief cells are cryptic progenitors for metaplasia in the stomach[J]. Gastroenterology, 2010, 139(6):2028-2037.
13. Goldenring JR, Nam KT, Mills JC. The origin of pre-neoplastic metaplasia in the stomach:chief cells emerge from the Mist[J]. Exp Cell Res, 2011, 317(19):2759-2764.
14. Qiao XT, Gumucio DL. Current molecular markers for gastric progenitor cells and gastric cancer stem cells[J]. J Gastroenterol, 2011, 46(7):855-865.
15. Barker N, Huch M, Kujala P, et al. Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro[J]. Cell Stem Cell, 2010, 6(1):25-36.
16. Fan XS, Wu HY, Yu HP, et al. Expression of Lgr5 in human colorectal carcinogenesis and its potential correlation with beta-catenin[J]. Int J Colorectal Dis, 2010, 25(5):583-590.
17. Leushacke M, Barker N. Lgr5 and Lgr6 as markers to study adult stem cell roles in self-renewal and cancer[J]. Oncogene, 2012, 31(25):3009-3022.
18. Simon E, Petke D, Böger C, et al. The spatial distribution of LGR5+ cells correlates with gastric cancer progression[J]. PLoS One, 2012, 7(4):e35486.
19. Quante M, Marrache F, Goldenring JR, et al. TFF2 mRNA transcript expression marks a gland progenitor cell of the gastric oxyntic mucosa[J]. Gastroenterology, 2010, 139(6):2018-2027.
20. Huh WJ, Esen E, Geahlen JH, et al. XBP1 controls maturation of gastric zymogenic cells by induction of MIST1 and expansion of the rough endoplasmic reticulum[J]. Gastroenterology, 2010, 139(6):2038-2049.
21. Tian X, Jin RU, Bredemeyer AJ, et al. RAB26 and RAB3D are direct transcriptional targets of MIST1 that regulate exocrine granulematuration[J]. Mol Cell Biol, 2010, 30(5):1269-1284.
22. Lennerz JK, Kim SH, Oates EL, et al. The transcription factor MIST1 is a novel human gastric chief cell marker whose expression is lost in metaplasia, dysplasia, and carcinoma[J]. Am J Pathol, 2010, 177(3):1514-1533.
23. Zhang Y, Huang X. Investigation of doublecortin and calcium/calmodulin-dependent protein kinase-like-1-expressing cells in the mouse stomach[J]. J Gastroenterol Hepatol, 2010, 25(3):576-582.
24. Kikuchi M, Nagata H, Watanabe N, et al. Altered expression of a putative progenitor cell marker DCAMKL1 in the rat gastric mucosa in regeneration, metaplasia and dysplasia[J]. BMC Gastroenterol, 2010, 10:65.
25. Snippert HJ, van Es JH, van den Born M, et al. Prominin-1/CD133 marks stem cells and early progenitors in mouse smallintestine[J]. Gastroenterology, 2009, 136(7):2187-2194.
26. Zhu L, Gibson P, Currle DS, et al. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation[J]. Nature, 2009, 457(7229):603-607.
27. Fukamachi H, Shimada S, Ito K, et al. CD133 is a marker of gland-forming cells in gastric tumors and Sox17 is involved in its regulation[J]. Cancer Sci, 2011, 102(7):1313-1321.
28. Cao L, Hu X, Zhang Y, et al. Omental milky spots in screening gastric cancer stem cells[J]. Neoplasma, 2011, 58(1):20-26.
29. Yasui W, Sentani K, Sakamoto N, et al. Molecular pathology of gastric cancer:research and practice[J]. Pathol Res Pract, 2011, 207(10):608-612.
30. Matkar SS, Durham A, Brice A, et al. Systemic activation of K-ras rapidly induces gastric hyperplasia and metaplasia in mice[J]. Am J Cancer Res, 2011, 1(4):432-445.
31. da Cunha CB, Oliveira C, Wen X, et al. De novo expression of CD44 variants in sporadic and hereditary gastric cancer[J]. Lab Invest, 2010, 90(11):1604-1614.
32. Palagani V, El Khatib M, Krech T, et al. Decrease of CD44-positive cells correlates with tumor response to chemotherapy in patients with gastrointestinal cancer[J]. Anticancer Res, 2012, 32(5):1747-1755.
33. Takaishi S, Okumura T, Tu S, et al. Identification of gastric cancer stem cells using the cell surface marker CD44[J]. Stem Cells, 2009, 27(5):1006-1020.
34. Dhingra S, Feng W, Brown RE, et al. Clinicopathologic significance of putative stem cell markers, CD44 and nestin, in gastric adenocarcinoma[J]. Int J Clin Exp Pathol, 2011, 4(8):733-741.
35. Arnold K, Sarkar A, Yram MA, et al. Sox2+ adult stem andprogenitor cells are important for tissue regeneration and survival of mice[J]. Cell Stem Cell, 2011, 9(4):317-329.
36. Honda A, Hirose M, Hatori M, et al. Generation of induced pluripotent stem cells in rabbits:potential experimental models for human regenerative medicine[J]. J Biol Chem, 2010, 285(41):31362-31369.
37. Kirchner T, Muller S, Hattori T, et al. Metaplasia, intraepithelialneoplasia and early cancer of the stomach are related to dedifferentiated epithelial cells defined by cytokeratin-7 expression in gastritis[J]. Virchows Arch, 2001, 439(4):512-522.
38. Karam SM. Mouse models demonstrating the role of stem/progenitor cells in gastric carcinogenesis[J]. Front Biosci, 2010, 15:595-603.
39. Houghton J, Stoicov C, Nomura S, et al. Gastric cancer originating from bone marrowderived cells[J]. Science, 2004, 306(5701):1568-1571.
40. Quante M, Tu SP, Tomita H, et al. Bone marrow-derivedmyofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth[J]. Cancer Cell, 2011, 19(2):257-272.
41. Shibata W, Ariyama H, Westphalen CB, et al. Stromal cell-derived factor-1 overexpression induces gastric dysplasia through expansion of stromal myofibroblasts and epithelial progenitors[J]. Gut, 2012 Feb 23. [Epub ahead of print].
42. Pilpilidis I, Kountouras J, Zavos C, et al. Upper gastrointestinal carcinogenesis:H. pylori and stem cell cross-talk[J]. J Surg Res, 2011, 166(2):255-264.
43. Varon C, Dubus P, Mazurier F, et al. Helicobacter pylori infectionrecruits bone marrow-derived cells that participate in gastric prene-oplasia in mice[J]. Gastroenterology, 2012, 142(2):281-291.
44. Kouznetsova I, Kalinski T, Meyer F, et al. Self-renewal of the human gastric epithelium:new insights from expression profiling using laser microdissection[J]. Mol Biosyst, 2011, 7(4):1105-1112.
45. Polk DB, Peek RM Jr. Helicobacter pylori:gastric cancer and beyond[J]. Nat Rev Cancer, 2010, 10(6):403-414.
46. Ding SZ, Goldberg JB, Hatakeyama M. Helicobacter pyloriinfection, oncogenic pathways and epigenetic mechanisms in gastriccarcinogenesis[J]. Future Oncol, 2010, 6(5):851-862.
47. Seoane J. NO signals from the cancer stem cell niche[J]. Cell Stem Cell, 2010, 6(2):97-98.
48. Takebe N, Harris PJ, Warren RQ, et al. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways[J]. Nat Rev Clin Oncol, 2011, 8(2):97-106.
49. Takebe N, Ivy SP. Controversies in cancer stem cells:targetingembryonic signaling pathways[J]. Clin Cancer Res, 2010, 16(12):3106-3112.
50. Martelli AM, Evangelisti C, Follo MY, et al. Targeting the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling network in cancer stem cells[J]. Curr Med Chem, 2011, 18(18):2715-2726.
51. Thiel A, Mrena J, Ristimäki A. Cyclooxygenase-2 and gastric cancer[J]. Cancer Metastasis Rev, 2011, 30(3-4):387-395.
52. Futagami S, Hamamoto T, Shimpuku M, et al. Celecoxib inhibitsCD133-positive cell migration via reduction of CCR2 in Helicobacter pylori-infected Mongolian gerbils[J]. Digestion, 2010, 81(3):193-203.
53. Stoicov C, Li H, Cerny J, et al. How the study of Helicobacter infection can contribute to the understanding of carcinoma development[J]. Clin Microbiol Infect, 2009, 15(9):813-822.
54. Cukierman E, Bassi DE. The mesenchymal tumor microenvironment:a drug-resistant niche[J]. Cell Adh Migr, 2012, 6(3):285-296.
55. Cabarcas SM, Mathews LA, Farrar WL. The cancer stem cell niche-there goes the neighborhood?[J]. Int J Cancer, 2011, 129(10):2315-2327.
  1. 1. van der Flier LG, van Gijn ME, Hatzis P, et al. Transcription factor achaete scute-like 2 controls intestinal stem cell fate[J]. Cell, 2009, 136(5):903-912.
  2. 2. McNairn AJ, Guasch G. Epithelial transition zones:mergingmicroenvironments, niches, and cellular transformation[J]. Eur J Dermatol, 2011, 21 Suppl 2:21-28.
  3. 3. Levin DE, Grikscheit TC. Tissue-engineering of the gastrointestinal tract[J]. Curr Opin Pediatr, 2012, 24(3):365-370.
  4. 4. Haegebarth A, Clevers H. Wnt signaling, Lgr5, and stem cells in the intestine and skin[J]. Am J Pathol, 2009, 174(3):715-721.
  5. 5. Neal MD, Richardson WM, Sodhi CP, et al. Intestinal stem cells and their roles during mucosal injury and repair[J]. J Surg Res, 2011, 167(1):1-8.
  6. 6. Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244):262-265.
  7. 7. Sato T, van Es JH, Snippert HJ, et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts[J]. Nature, 2011, 469(7330):415-418.
  8. 8. Kim TH, Escudero S, Shivdasani RA. Intact function of Lgr5 receptor-expressing intestinal stem cells in the absence of Paneth cells[J]. Proc Natl Acad Sci USA, 2012, 109(10):3932-3937.
  9. 9. Saikawa Y, Fukuda K, Takahashi T, et al. Gastric carcinogenesis and the cancer stem cell hypothesis[J]. Gastric Cancer, 2010, 13(1):11-24.
  10. 10. Karam SM. A focus on parietal cells as a renewing cell population[J]. World J Gastroenterol, 2010, 16(5):538-546.
  11. 11. Bredemeyer AJ, Geahlen JH, Weis VG, et al. The gastric epithelialprogenitor cell niche and differentiation of the zymogenic (chief) cell lineage[J]. Dev Biol, 2009, 325(1):211-224.
  12. 12. Nam KT, Lee HJ, Sousa JF, et al. Mature chief cells are cryptic progenitors for metaplasia in the stomach[J]. Gastroenterology, 2010, 139(6):2028-2037.
  13. 13. Goldenring JR, Nam KT, Mills JC. The origin of pre-neoplastic metaplasia in the stomach:chief cells emerge from the Mist[J]. Exp Cell Res, 2011, 317(19):2759-2764.
  14. 14. Qiao XT, Gumucio DL. Current molecular markers for gastric progenitor cells and gastric cancer stem cells[J]. J Gastroenterol, 2011, 46(7):855-865.
  15. 15. Barker N, Huch M, Kujala P, et al. Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro[J]. Cell Stem Cell, 2010, 6(1):25-36.
  16. 16. Fan XS, Wu HY, Yu HP, et al. Expression of Lgr5 in human colorectal carcinogenesis and its potential correlation with beta-catenin[J]. Int J Colorectal Dis, 2010, 25(5):583-590.
  17. 17. Leushacke M, Barker N. Lgr5 and Lgr6 as markers to study adult stem cell roles in self-renewal and cancer[J]. Oncogene, 2012, 31(25):3009-3022.
  18. 18. Simon E, Petke D, Böger C, et al. The spatial distribution of LGR5+ cells correlates with gastric cancer progression[J]. PLoS One, 2012, 7(4):e35486.
  19. 19. Quante M, Marrache F, Goldenring JR, et al. TFF2 mRNA transcript expression marks a gland progenitor cell of the gastric oxyntic mucosa[J]. Gastroenterology, 2010, 139(6):2018-2027.
  20. 20. Huh WJ, Esen E, Geahlen JH, et al. XBP1 controls maturation of gastric zymogenic cells by induction of MIST1 and expansion of the rough endoplasmic reticulum[J]. Gastroenterology, 2010, 139(6):2038-2049.
  21. 21. Tian X, Jin RU, Bredemeyer AJ, et al. RAB26 and RAB3D are direct transcriptional targets of MIST1 that regulate exocrine granulematuration[J]. Mol Cell Biol, 2010, 30(5):1269-1284.
  22. 22. Lennerz JK, Kim SH, Oates EL, et al. The transcription factor MIST1 is a novel human gastric chief cell marker whose expression is lost in metaplasia, dysplasia, and carcinoma[J]. Am J Pathol, 2010, 177(3):1514-1533.
  23. 23. Zhang Y, Huang X. Investigation of doublecortin and calcium/calmodulin-dependent protein kinase-like-1-expressing cells in the mouse stomach[J]. J Gastroenterol Hepatol, 2010, 25(3):576-582.
  24. 24. Kikuchi M, Nagata H, Watanabe N, et al. Altered expression of a putative progenitor cell marker DCAMKL1 in the rat gastric mucosa in regeneration, metaplasia and dysplasia[J]. BMC Gastroenterol, 2010, 10:65.
  25. 25. Snippert HJ, van Es JH, van den Born M, et al. Prominin-1/CD133 marks stem cells and early progenitors in mouse smallintestine[J]. Gastroenterology, 2009, 136(7):2187-2194.
  26. 26. Zhu L, Gibson P, Currle DS, et al. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation[J]. Nature, 2009, 457(7229):603-607.
  27. 27. Fukamachi H, Shimada S, Ito K, et al. CD133 is a marker of gland-forming cells in gastric tumors and Sox17 is involved in its regulation[J]. Cancer Sci, 2011, 102(7):1313-1321.
  28. 28. Cao L, Hu X, Zhang Y, et al. Omental milky spots in screening gastric cancer stem cells[J]. Neoplasma, 2011, 58(1):20-26.
  29. 29. Yasui W, Sentani K, Sakamoto N, et al. Molecular pathology of gastric cancer:research and practice[J]. Pathol Res Pract, 2011, 207(10):608-612.
  30. 30. Matkar SS, Durham A, Brice A, et al. Systemic activation of K-ras rapidly induces gastric hyperplasia and metaplasia in mice[J]. Am J Cancer Res, 2011, 1(4):432-445.
  31. 31. da Cunha CB, Oliveira C, Wen X, et al. De novo expression of CD44 variants in sporadic and hereditary gastric cancer[J]. Lab Invest, 2010, 90(11):1604-1614.
  32. 32. Palagani V, El Khatib M, Krech T, et al. Decrease of CD44-positive cells correlates with tumor response to chemotherapy in patients with gastrointestinal cancer[J]. Anticancer Res, 2012, 32(5):1747-1755.
  33. 33. Takaishi S, Okumura T, Tu S, et al. Identification of gastric cancer stem cells using the cell surface marker CD44[J]. Stem Cells, 2009, 27(5):1006-1020.
  34. 34. Dhingra S, Feng W, Brown RE, et al. Clinicopathologic significance of putative stem cell markers, CD44 and nestin, in gastric adenocarcinoma[J]. Int J Clin Exp Pathol, 2011, 4(8):733-741.
  35. 35. Arnold K, Sarkar A, Yram MA, et al. Sox2+ adult stem andprogenitor cells are important for tissue regeneration and survival of mice[J]. Cell Stem Cell, 2011, 9(4):317-329.
  36. 36. Honda A, Hirose M, Hatori M, et al. Generation of induced pluripotent stem cells in rabbits:potential experimental models for human regenerative medicine[J]. J Biol Chem, 2010, 285(41):31362-31369.
  37. 37. Kirchner T, Muller S, Hattori T, et al. Metaplasia, intraepithelialneoplasia and early cancer of the stomach are related to dedifferentiated epithelial cells defined by cytokeratin-7 expression in gastritis[J]. Virchows Arch, 2001, 439(4):512-522.
  38. 38. Karam SM. Mouse models demonstrating the role of stem/progenitor cells in gastric carcinogenesis[J]. Front Biosci, 2010, 15:595-603.
  39. 39. Houghton J, Stoicov C, Nomura S, et al. Gastric cancer originating from bone marrowderived cells[J]. Science, 2004, 306(5701):1568-1571.
  40. 40. Quante M, Tu SP, Tomita H, et al. Bone marrow-derivedmyofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth[J]. Cancer Cell, 2011, 19(2):257-272.
  41. 41. Shibata W, Ariyama H, Westphalen CB, et al. Stromal cell-derived factor-1 overexpression induces gastric dysplasia through expansion of stromal myofibroblasts and epithelial progenitors[J]. Gut, 2012 Feb 23. [Epub ahead of print].
  42. 42. Pilpilidis I, Kountouras J, Zavos C, et al. Upper gastrointestinal carcinogenesis:H. pylori and stem cell cross-talk[J]. J Surg Res, 2011, 166(2):255-264.
  43. 43. Varon C, Dubus P, Mazurier F, et al. Helicobacter pylori infectionrecruits bone marrow-derived cells that participate in gastric prene-oplasia in mice[J]. Gastroenterology, 2012, 142(2):281-291.
  44. 44. Kouznetsova I, Kalinski T, Meyer F, et al. Self-renewal of the human gastric epithelium:new insights from expression profiling using laser microdissection[J]. Mol Biosyst, 2011, 7(4):1105-1112.
  45. 45. Polk DB, Peek RM Jr. Helicobacter pylori:gastric cancer and beyond[J]. Nat Rev Cancer, 2010, 10(6):403-414.
  46. 46. Ding SZ, Goldberg JB, Hatakeyama M. Helicobacter pyloriinfection, oncogenic pathways and epigenetic mechanisms in gastriccarcinogenesis[J]. Future Oncol, 2010, 6(5):851-862.
  47. 47. Seoane J. NO signals from the cancer stem cell niche[J]. Cell Stem Cell, 2010, 6(2):97-98.
  48. 48. Takebe N, Harris PJ, Warren RQ, et al. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways[J]. Nat Rev Clin Oncol, 2011, 8(2):97-106.
  49. 49. Takebe N, Ivy SP. Controversies in cancer stem cells:targetingembryonic signaling pathways[J]. Clin Cancer Res, 2010, 16(12):3106-3112.
  50. 50. Martelli AM, Evangelisti C, Follo MY, et al. Targeting the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling network in cancer stem cells[J]. Curr Med Chem, 2011, 18(18):2715-2726.
  51. 51. Thiel A, Mrena J, Ristimäki A. Cyclooxygenase-2 and gastric cancer[J]. Cancer Metastasis Rev, 2011, 30(3-4):387-395.
  52. 52. Futagami S, Hamamoto T, Shimpuku M, et al. Celecoxib inhibitsCD133-positive cell migration via reduction of CCR2 in Helicobacter pylori-infected Mongolian gerbils[J]. Digestion, 2010, 81(3):193-203.
  53. 53. Stoicov C, Li H, Cerny J, et al. How the study of Helicobacter infection can contribute to the understanding of carcinoma development[J]. Clin Microbiol Infect, 2009, 15(9):813-822.
  54. 54. Cukierman E, Bassi DE. The mesenchymal tumor microenvironment:a drug-resistant niche[J]. Cell Adh Migr, 2012, 6(3):285-296.
  55. 55. Cabarcas SM, Mathews LA, Farrar WL. The cancer stem cell niche-there goes the neighborhood?[J]. Int J Cancer, 2011, 129(10):2315-2327.
  • 上一篇

    原發(fā)性肺漿細胞瘤一例
  • 下一篇

    原發(fā)性肺漿細胞瘤一例