• 南京醫(yī)科大學(xué)附屬淮安第一醫(yī)院普外科(江蘇淮安 223300);

目的  探討甲狀腺乳頭狀癌(PTC)中微小RNA-34b(miR-34b)基因的表達(dá)及其啟動子區(qū)的甲基化情況,并分析甲基化與其臨床病理特征的關(guān)系。
方法  收集2008年9月至2010年10月期間南京醫(yī)科大學(xué)附屬淮安第一醫(yī)院行手術(shù)切除的25例PTC患者的癌組織和癌旁組織。采用實時定量PCR法檢測其miR-34bmRNA的表達(dá),采用甲基化特異性(MSP)PCR法檢測miR-34b基因啟動子區(qū)的甲基化情況。
結(jié)果  PTC癌組織中miR-34bmRNA的相對表達(dá)量為0.85±0.05,較癌旁組織的1.62±0.09低(P=0.030)。25例PTC癌組織中,有18例(72%)患者的miR-34b基因啟動子區(qū)發(fā)生甲基化,癌旁組織組有10例(40%),癌組織的甲基化比例較高(P=0.021)。甲基化與PTC患者的年齡、性別、腫瘤大小、TNM分期和包膜浸潤均無關(guān)(P>0.05),而與淋巴結(jié)轉(zhuǎn)移有關(guān),發(fā)生淋巴結(jié)轉(zhuǎn)移者的甲基化比例高于未發(fā)生淋巴結(jié)轉(zhuǎn)移者(P<0.05)。
結(jié)論  PTC癌組織中miR-34b基因啟動子區(qū)的異常甲基化可能是該基因失活的原因之一,并且可能與PTC的發(fā)生、發(fā)展以及轉(zhuǎn)移均有關(guān),其機(jī)理值得進(jìn)一步研究。

引用本文: 韓學(xué)東,任毅,甄林林. miR-34b基因啟動子區(qū)甲基化與甲狀腺乳頭狀癌的關(guān)系△. 中國普外基礎(chǔ)與臨床雜志, 2013, 20(6): 627-631. doi: 復(fù)制

版權(quán)信息: ?四川大學(xué)華西醫(yī)院華西期刊社《中國普外基礎(chǔ)與臨床雜志》版權(quán)所有,未經(jīng)授權(quán)不得轉(zhuǎn)載、改編

1. Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973-2002[J]. JAMA, 2006, 295(18):2164-2167.
2. How J, Tabah R. Explaining the increasing incidence of differentiated thyroid cancer[J]. CMAJ, 2007, 177(11):1383-1384.
3. Yip L, Kelly L, Shuai Y, et al. MicroRNA signature distinguishes the degree of aggressiveness of papillary thyroid carcinoma[J]. Ann Surg Oncol, 2011, 18(7):2035-2041.
4. Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis[J]. Cancer Cell, 2006, 9(3):189-198.
5. 姚汝鋮, 鄭軍, 邢榮春. 微小RNA在胰腺癌中的研究進(jìn)展[J]. 中國普外基礎(chǔ)與臨床雜志, 2012, 19(8):911-915.
6. Lopez-Serra P, Esteller M. DNA methylation-associated silencingof tumor-suppressor microRNAs in cancer[J]. Oncogene, 2012, 31(13):1609-1622.
7. Mackiewicz M, Huppi K, Pitt JJ, et al. Identification of the receptor tyrosine kinase AXL in breast cancer as a target for the human miR-34a microRNA[J]. Breast Cancer Res Treat, 2011, 130(2):663-679.
8. Nalls D, Tang SN, Rodova M, et al. Targeting epigenetic regulation of miR-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells[J]. PLoS One, 2011, 6(8):e24099.
9. Gao LB, Li LJ, Pan XM, et al. A genetic variant in the promoter region of miR-34b/c is associated with a reduced risk of colorectal cancer[J]. Biol Chem, 2013, 394(3):415-420.
10. Vogt M, Munding J, Grüner M, et al. Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas[J]. Virchows Arch, 2011, 458(3):313-322.
11. Hoque MO, Rosenbaum E, Westra WH, et al. Quantitative assessment of promoter methylation profiles in thyroid neoplasms[J]. J Clin Endocfinol Metab, 2005, 90(7):4011-4018.
12. Hiroki E, Suzuki F, Akahira J, et al. MicroRNA-34b functions as a potential tumor suppressor in endometrial serous adenocarcinoma[J]. Int J Cancer, 2012, 131(4):E395-E404.
13. Wong KY, Yu L, Chim CS. DNA methylation of tumor suppressormiRNA genes:a lesson from the miR-34 family[J]. Epigenomics,.
14. Xing M, Cohen Y, Mambo E, et al. Early occurrence of RASSF1Ahypermethylation and its mutual exclusion with BRAF mutation inthyroid tumorigenesis[J]. Cancer Res, 2004, 64(5):1664-1668.
15. Ogasawara S, Maesawa C, Yamamoto M, et al. Disruption ofcell-type-specific methylation at the maspin gene promoter is frequ-ently involved in undifferentiated thyroid cancers[J]. Oncogene,.
16. He L, He X, Lim LP, et al. A microRNA component of the p53 tumour suppressor network[J]. Nature, 2007, 447(7148):1130-1134.
17. 張明, 劉衛(wèi)輝, 尤楠, 等. 7種microRNAs在原發(fā)性肝癌組織和癌旁組織間的差異表達(dá)及與血清腫瘤標(biāo)志物水平的相關(guān)性研究[J]. 中國普外基礎(chǔ)與臨床雜志, 2010, 17(6):562-566.
18. Mathé E, Nguyen GH, Funamizu N, et al. Inflammation regulates microRNA expression in cooperation with p53 and nitric oxide[J]. Int J Cancer, 2012, 131(3):760-765.
19. Yamazaki H, Chijiwa T, Inoue Y, et al. Overexpression of the miR-34 family suppresses invasive growth of malignant melanomawith the wild-type p53 gene[J]. Exp Ther Med, 2012, 3(5):793-796.
20. Benassi B, Flavin R, Marchionni L, et al. MYC is activated by USP2a-mediated modulation of microRNAs in prostate cancer[J]. Cancer Discov, 2012, 2(3):236-247.
21. Majid S, Dar AA, Saini S, et al. miRNA-34b inhibits prostate cancer through demethylation, active chromatin modifications, and AKT pathways[J]. Clin Cancer Res, 2013, 19(1):73-84.
22. Du Y, Liu Z, Gu L, et al. Characterization of human gastric carcinoma-related methylation of 9 miR CpG islands and repression of their expressions in vitro and in vivo[J]. BMC Cancer, 2012, 12:249.
23. Tsai KW, Wu CW, Hu LY, et al. Epigenetic regulation of miR-34b and miR-129 expression in gastric cancer[J]. Int J Cancer, 2011, 129(11):2600-2610.
24. Balça-Silva J, Sousa Neves S, Gonçalves AC, et al. Effect of miR-34b overexpression on the radiosensitivity of non-small cell lung cancer cell lines[J]. Anticancer Res, 2012, 32(5):1603-1609.
25. Wang Z, Chen Z, Gao Y, et al. DNA hypermethylation of microRNA-34b/c has prognostic value for stage Ⅰ non-small cell lung cancer[J]. Cancer Biol Ther, 2011, 11(5):490-496.
26. , 23(5):1117-1124.
27. , 3(1):83-92.
  1. 1. Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973-2002[J]. JAMA, 2006, 295(18):2164-2167.
  2. 2. How J, Tabah R. Explaining the increasing incidence of differentiated thyroid cancer[J]. CMAJ, 2007, 177(11):1383-1384.
  3. 3. Yip L, Kelly L, Shuai Y, et al. MicroRNA signature distinguishes the degree of aggressiveness of papillary thyroid carcinoma[J]. Ann Surg Oncol, 2011, 18(7):2035-2041.
  4. 4. Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis[J]. Cancer Cell, 2006, 9(3):189-198.
  5. 5. 姚汝鋮, 鄭軍, 邢榮春. 微小RNA在胰腺癌中的研究進(jìn)展[J]. 中國普外基礎(chǔ)與臨床雜志, 2012, 19(8):911-915.
  6. 6. Lopez-Serra P, Esteller M. DNA methylation-associated silencingof tumor-suppressor microRNAs in cancer[J]. Oncogene, 2012, 31(13):1609-1622.
  7. 7. Mackiewicz M, Huppi K, Pitt JJ, et al. Identification of the receptor tyrosine kinase AXL in breast cancer as a target for the human miR-34a microRNA[J]. Breast Cancer Res Treat, 2011, 130(2):663-679.
  8. 8. Nalls D, Tang SN, Rodova M, et al. Targeting epigenetic regulation of miR-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells[J]. PLoS One, 2011, 6(8):e24099.
  9. 9. Gao LB, Li LJ, Pan XM, et al. A genetic variant in the promoter region of miR-34b/c is associated with a reduced risk of colorectal cancer[J]. Biol Chem, 2013, 394(3):415-420.
  10. 10. Vogt M, Munding J, Grüner M, et al. Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas[J]. Virchows Arch, 2011, 458(3):313-322.
  11. 11. Hoque MO, Rosenbaum E, Westra WH, et al. Quantitative assessment of promoter methylation profiles in thyroid neoplasms[J]. J Clin Endocfinol Metab, 2005, 90(7):4011-4018.
  12. 12. Hiroki E, Suzuki F, Akahira J, et al. MicroRNA-34b functions as a potential tumor suppressor in endometrial serous adenocarcinoma[J]. Int J Cancer, 2012, 131(4):E395-E404.
  13. 13. Wong KY, Yu L, Chim CS. DNA methylation of tumor suppressormiRNA genes:a lesson from the miR-34 family[J]. Epigenomics,.
  14. 14. Xing M, Cohen Y, Mambo E, et al. Early occurrence of RASSF1Ahypermethylation and its mutual exclusion with BRAF mutation inthyroid tumorigenesis[J]. Cancer Res, 2004, 64(5):1664-1668.
  15. 15. Ogasawara S, Maesawa C, Yamamoto M, et al. Disruption ofcell-type-specific methylation at the maspin gene promoter is frequ-ently involved in undifferentiated thyroid cancers[J]. Oncogene,.
  16. 16. He L, He X, Lim LP, et al. A microRNA component of the p53 tumour suppressor network[J]. Nature, 2007, 447(7148):1130-1134.
  17. 17. 張明, 劉衛(wèi)輝, 尤楠, 等. 7種microRNAs在原發(fā)性肝癌組織和癌旁組織間的差異表達(dá)及與血清腫瘤標(biāo)志物水平的相關(guān)性研究[J]. 中國普外基礎(chǔ)與臨床雜志, 2010, 17(6):562-566.
  18. 18. Mathé E, Nguyen GH, Funamizu N, et al. Inflammation regulates microRNA expression in cooperation with p53 and nitric oxide[J]. Int J Cancer, 2012, 131(3):760-765.
  19. 19. Yamazaki H, Chijiwa T, Inoue Y, et al. Overexpression of the miR-34 family suppresses invasive growth of malignant melanomawith the wild-type p53 gene[J]. Exp Ther Med, 2012, 3(5):793-796.
  20. 20. Benassi B, Flavin R, Marchionni L, et al. MYC is activated by USP2a-mediated modulation of microRNAs in prostate cancer[J]. Cancer Discov, 2012, 2(3):236-247.
  21. 21. Majid S, Dar AA, Saini S, et al. miRNA-34b inhibits prostate cancer through demethylation, active chromatin modifications, and AKT pathways[J]. Clin Cancer Res, 2013, 19(1):73-84.
  22. 22. Du Y, Liu Z, Gu L, et al. Characterization of human gastric carcinoma-related methylation of 9 miR CpG islands and repression of their expressions in vitro and in vivo[J]. BMC Cancer, 2012, 12:249.
  23. 23. Tsai KW, Wu CW, Hu LY, et al. Epigenetic regulation of miR-34b and miR-129 expression in gastric cancer[J]. Int J Cancer, 2011, 129(11):2600-2610.
  24. 24. Balça-Silva J, Sousa Neves S, Gonçalves AC, et al. Effect of miR-34b overexpression on the radiosensitivity of non-small cell lung cancer cell lines[J]. Anticancer Res, 2012, 32(5):1603-1609.
  25. 25. Wang Z, Chen Z, Gao Y, et al. DNA hypermethylation of microRNA-34b/c has prognostic value for stage Ⅰ non-small cell lung cancer[J]. Cancer Biol Ther, 2011, 11(5):490-496.
  26. 26. , 23(5):1117-1124.
  27. 27. , 3(1):83-92.
  • 上一篇

    縱隔巨大淋巴結(jié)增生癥一例
  • 下一篇

    縱隔巨大淋巴結(jié)增生癥一例